HCC 2026 Site Selection Process

Team

Nathaniel Holguin Karsten Jones Anthony Nuzzo

PROJECT DESCRIPTION

 Problem Statement: Optimize the conversion of John C. Stennis Lock & Dam into a small-scale hydropower facility.

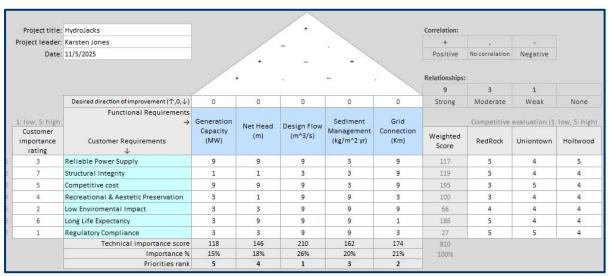
Dam Assessment

Evaluate the dam's hydraulic and structural characteristics to determine retrofit potential.

- Estimate head, flow rate, and discharge conditions.
- Analyze structural layout (spillway, gates, channel geometry).
- Identify constraints from navigation and flood management.

Feasibility of Integration

Assess technical and logistical feasibility of adding a turbine system.


- Measure proximity to power grid (≈ 900 m) using QGIS.
- Analyze site topography and floodplain to select turbine placement.
- Evaluate cost, environmental, and permitting considerations.

Optimizing Turbine Design

Optimize StreamDiver configuration for performance and reliability under site conditions.

- Match turbine size and runner geometry to flow data.
- Estimate power output and efficiency under variable river stages.
- Plan validation testing for structural integrity and energy output.

DESIGN REQUIREMENTS

Engineering Requirement Targets

- Generation capacity between 1-10MW
- Net head between 2-12 meters
- Design flow of at least 30 m³/s
- Sediment mass deposited in intake zone <5 kg/m² yr
- Grid connection distance < 8 km

DESIGN REQUIREMENTS

Customer requirements:

Reliable power supply to the customer

Relies heavily upon he generation capacity, and historic head and flows.

Structural integrity

Depends on dam quality and type such as earth/concrete.

Competitive cost

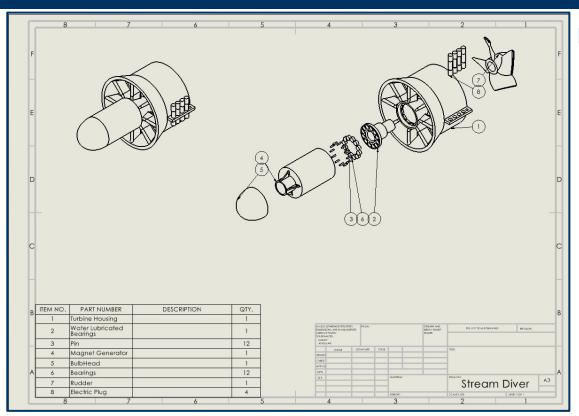
Relies on grid connection distance, location, and utility

Recreational/aesthetic preservation

Relies on sediment, and overall construction additions.

Low environmental impact

Relies on sediment and construction additions. as well as location of the site.


Long life expectancy

Relies on generation capacity, and historic head and flows and sediment management.

Regulatory compliance

Design must comply with FERC Subpart D and K licensing, Clean Water Act, and fish-passage standards.

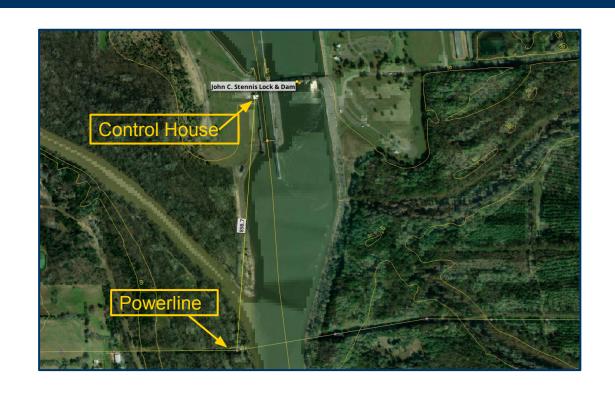
DESIGN DESCRIPTION

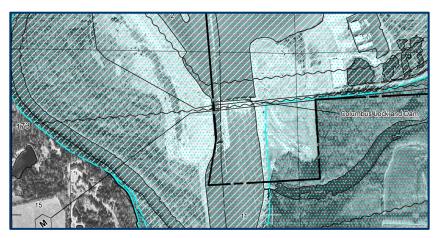
Hydropower Turbine Model

- Turbine Housing Encloses rotor and generator
- Fixed Blade Runner A simple, low-maintenance design
- Fish Safe Blades Rounded stainless-steel blades reduce strike risk
- Magnet Generator Direct drive permanent magnet generator; eliminates need for a gearbox

VOITH

JOHN C STENNIS DAM (COLUMBUS LAKE)


- Lock and Dam on Tennessee Tombigbee
 Waterway
- Columbus, Mississippi
- Operated by US Army Corps of Engineers.
- Outflow: 2800 cfs 12250 cfs (79.3 346.9 m³/s)
- 900m to nearest power line
- Gate size (6x): 60'x26' (18.3 x 7.9m)
- Streambed: 126' Top of dam: 188.6'
- Head: 27' (8.2m) Head Range: 62.6' (19.1m)



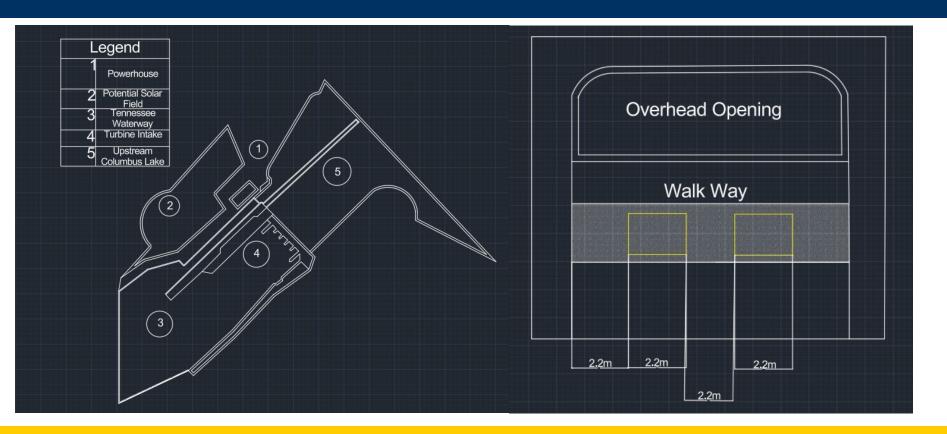
ENGINEERING MODEL - QGIS

- Created QGIS model to assess John C. Stennis Lock & Dam site.
- Identified key structures: Control house and nearby powerline. (899 m)
- Terrain and flow contours for turbine placement.
- Supports StreamDiver integration and floodplain evaluation.

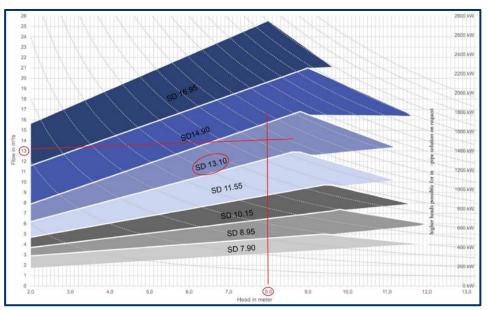
ENGINEERING MODEL - QGIS

FEMA Flood Insurance Rate Map (FIRM Panel 28087C0165K, Effective Feb 18, 2011)

Zone AE – 100-year Floodplain (shown in blue hatching)



FLOODWAY AREAS IN ZONE AE


The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

- Our dam lies directly within this mapped floodway, any retrofit design here must account for periodic flooding, high-flow conditions, and potential submersion of components.
- This confirms that flood resilience, through sealed housings, elevated controls, and durable materials, will be a key part of our hydropower system design moving forward.

ENGINEERING MODEL - AutoCAD

JOHN C STENNIS POWER OUTPUT

Real Power =
$$\eta * \rho * Q_{per} * g * h * N$$

Energy = $P_f * t$
SD 13.1 \rightarrow d = 1.31 m

Variable	Name	Value	Unit
h	Head/Height	8.2296	m
Q _{total}	General Outflow	79.2871	m³/s
N	Number of Turbine units 6		
Q _{per}	Outflow per unit	13.2145	m³/s
n	Efficiency	0.85	
Р	Power	0.90681	MW
P _m	Shaft Power	0.77079	MW
P _f	Real Power	4.62475	MW
d	Diameter	1.31	m
t	Time used/operating 7000(80		hrs
E	Energy Produced in year	32,373	MWh

Economic Analysis

Present Worth is the net value of future income

$$P = A \left| \frac{\left(1+i\right)^{t} - 1}{i\left(1+i\right)^{t}} \right|$$

Using this estimate, the project could be paid off as early as 7 years.

Typical payback period for small hydro is 7-10 years

Next step is to expand upon this estimate to account for variable energy resources, price fluctuations, maintenance costs, etc.


Year	Present Worth
1	\$4,077,257.94
2	\$7,887,779.39
3	\$11,449,014.38
4	\$14,777,271.38
5	\$17,887,791.95
6	\$20,794,820.51
7	\$23,511,669.64
8	\$26,050,780.97
9	\$28,423,782.21
10	\$30,641,540.39
11	\$32,714,211.58
12	\$34,651,287.45
13	\$36,461,638.74
14	\$38,153,555.83
15	\$39,734,786.76

DESIGN VALIDATION - FEMA

Site Name: John C Stennis System Name: Turbine Subsystem Name: PMG Component Name: Fixed Runner	De	velopment Team: HCC	26	Page No 1 of 1 FEMA Date: 11/5/2025 RPN scale simplified 1:10	00
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Potential Causes and Mechanisms of Failure	RPN	Recommended Action
Generator Unit, Generates electricity	Generator shaft siezes, or failure	Electical production stops	Debris/sediment clogging the runner,erosion,wildlife		Utilize trashrack to filter animals and debris
Fixed Runner, Converts KE from water	Caviation	Runner becomes less efficient and in sevire cases cracks appear	Formation of vapor bubbles bursting around runner.extreme pressure fluctuations	40	High strength errosion resistant blades, improve pressure distribution shape of the blade.
Unit Casing, guides water to the runner	Leaks or cracks in housing	Electrical failure,erosion, loss of efficiency	Debris, excesive flow, trash	30	Utilize strong materials, trashrack, and aerodynamic design
Dam structure, supports water pressure from reservoir	Flooding	Downstream floods, wildlife impacts, components may erode	Irregular water volume moving above dam or through turbine	25	Regular inspection every 2- 4 years to assess dam structure and integrity

This competition's optional build and test challenge is primarily focused on a facility conceptual design. Testing and resources will be determined by our sponsor [1] at a later date.

SCHEDULE

BUDGET

What are our expenses to date?			
Description	Expense amount		
3d Printer	\$2,882.94		
Total Expenses	\$2,882.94		
True remaining balance	\$15,117.06		

- Due to government shutdown no funds have been placed into our account yet.
- We do expect to receive these funds and continue with this budget as normal.

MOVING FORWARD

With dam selected, we use mapping tools to guide our site assessment

Moving forward with CAD model to help with preliminary design

Contact USACE to gather more site-specific data

Keep working with Voith and CFturbo for further turbine analysis; fundraising

SOURCES

[1] U.S. Department of Energy Water Power Technologies Office, "2026 Hydropower Collegiate Competition," HeroX, 2025. [Online]. Available:

https://www.herox.com/hydropower-collegiate-competition. [Accessed: Nov. 05 2025].

[2]U. Dorji and R. Ghomashchi, "Hydro turbine failure mechanisms: An overview," *Eng. Fail. Anal.*, vol. 44, pp. 136–147, Sep. 2014.

THANK YOU!