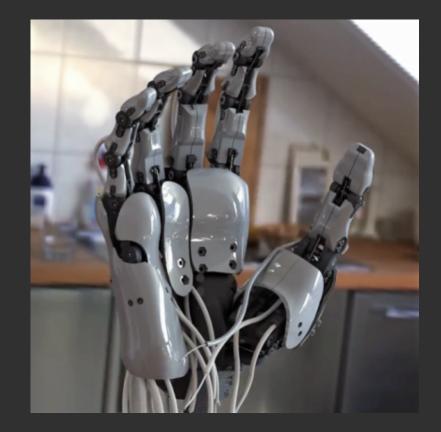
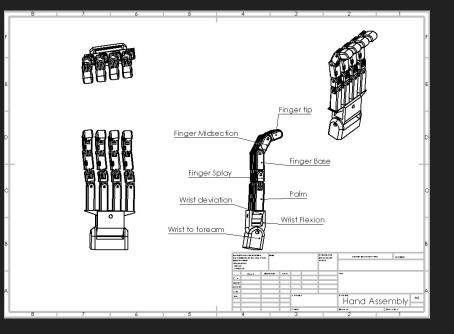
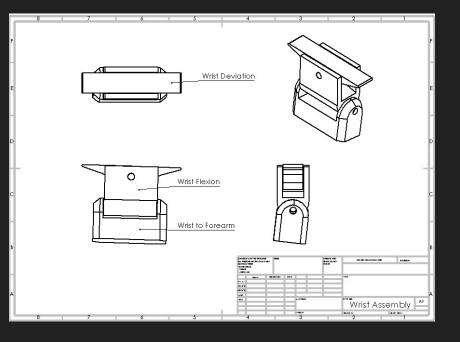
Humanoid Hand

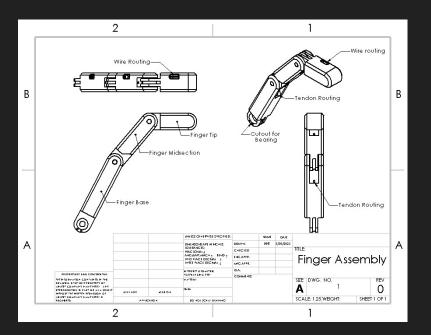

Noah Enlow, Tyler LeBeau, Joseph Maresh, David Lutz, Markus Steinebrunner, Justin Alonzo

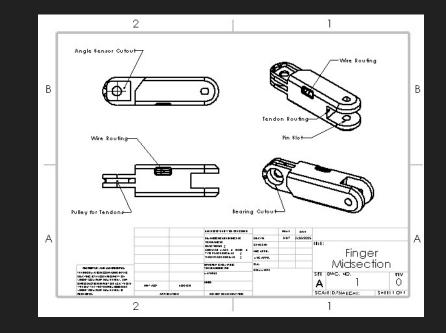
Project Description

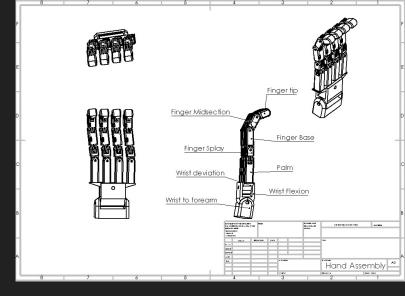

A robotic hand that matches the capabilities of the human hand

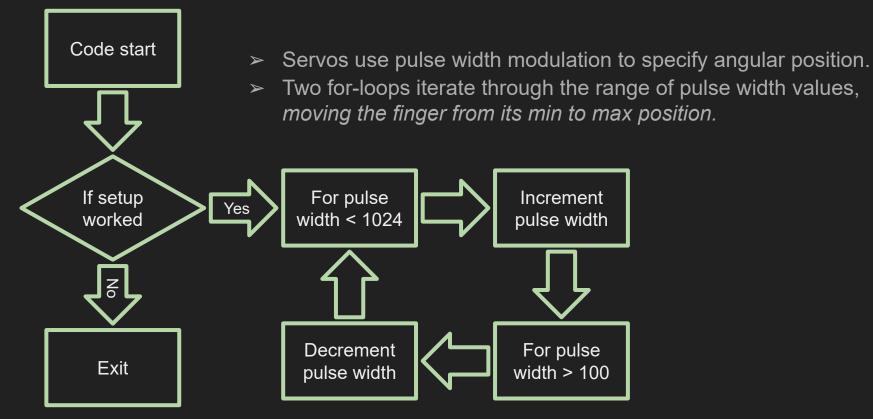

Finishing finger design and beginning thumb and wrist design

<u>Sponsored by</u>: Dr. Zach Lerner Dr. Reza Razavian




Design Description


Design Description



Design Description

- Uses motors to pull a tendon for actuation
- Each joint only allows for one DOF
- So 2 joints to replace a single joint in hand
 - \circ $\,$ $\,$ Ie one for flexion and one for deviation in the wrist $\,$
- Finger subsystem attaches to wrist through palm extension coming from "Wrist Deviation"
- Thumb (not pictured) will attach in front of palm extension and operate similarly to other fingers

Control Theory

Control Theory

- This control scheme serves only as proof-of-concept for servo control.
 - We will have "nested" control.
- ➤ Example:
 - Grasp object function calls the move finger functions, specifying desired angular positions.
 - Each move finger function uses PWM to move the finger's motor to the desired angular position specified by grasp object.
- \succ This affords us much modularity.

Customer Requirements

- Strength
- Speed
- Accurate Dimensions
- Accurate Weight
- Budget
- Many Degrees of Freedom
- Standard Form of Power to Function
- Basic Functional UI
- Precise Motion

Engineering Requirements

- Grip force (120-160N)
- Extension/Closure time (250-350ms)
- Approximate Size (1-1.5X)
- Approximate Weight (1-1.5X)
- Manufacturing Cost (\$1500)
- Degrees of Freedom (20 Deg)
- Ease of operation (10-20min start)
- Cycles (10K)
- Positional Accuracy (+/- .5mm)

QFD

		Technical Requirements							Customer Opinion Survey						
Customer Needs	Customer Weights(1-5)	Grip Force between 120-160N	Time from full extenstion to full closure is 250-350ms	Approximate size of human hand	Ap x 3-4 kg	Cost of manufacturing⊲\$1500	apx 20 DOF	Can be opperated by Lerner or Reza with a <10min demo	Each joint ensured up to 10k motions	Able to predict finger segment placement within +/- 5mm based sensor data	1 Poor	2	3 Acceptable	4	5 Excellent
Strength	3	9	3	3	3	9	9	3	9	3		B		С	A
Speed	5	3	9	3	1	9	9	3	9	9			С	В	A
Accurate dimensions	2	3	3	9	9	3	9	3	9	3			Α	С	В
Accurate weight	1	9	9	9	9	3	3	3	9	9		A	С		В
Budget	4	9	3	3	9	9	3	9	9	9	Α		С		В
Many degrees of freedom	4	3	3	3	3	9	9	9	9	3	С			В	A
Uses stand form of power to function	5	1	1	9	9	9	1	9	3	3					ABC
Has basic and functional ui	4	1	1	1	3	3	3	9	1	9	С			В	A
Precision of motion	4	3	3	9	3	9	3	9	9	9			В		AC
Technical Requirement Units		z	w	w	kg	\$	deg	min	*	E			Legend:		
Technical Requirement Targets		160	0.3	250	4	150	20	10	10K	5		Α		Shadow Ha	nd
Absol	lute Technical Importance	126	11 4	160	158	246	170	222	226	204		В		Dex Hand	
Rela	tive Technical Importance	8	б	g	7	1	5	<u>س</u>	0	4		С		Optimus Ha	nd

Engineering Calculations

Motor Torque Analysis

<u>Need</u>: Press a piano key.

With a rudimentary statics analysis, and accounting for a 50% loss in efficiency through the tendons, <u>required motor</u> torque is 0.144Nm.

A very attainable value.

1.0N OSN M-Frequired moment: M= (NX 0.027m)= m = 0.0076m = 0.027Nm to exect : 0.027Nm=F(0.0075m) tendon nada 50%. efficiency toos through 7.2N M= Feffection D = 7.2N(0.02m) = 0.144Nm "Required motor torque is ~0.14Nm, over with an efficiency loss of 501, 20 mm

3R Planar Manipulator Velocity Vector

Taking time derivative of forward kinematics equation and converting to matrix form yields:

 $\begin{bmatrix} -L_1\sin(\theta_1) - L_2\sin(\theta_1 + \theta_2) - L_3\sin(\theta_1 + \theta_2 + \theta_3) & -L_2\sin(\theta_1 + \theta_2) - L_3\sin(\theta_1 + \theta_2 + \theta_3) & -L_3\sin(\theta_1 + \theta_2 + \theta_3) \\ L_1\cos(\theta_1) + L_2\cos(\theta_1 + \theta_2) + L_3\cos(\theta_1 + \theta_2 + \theta_3) & L_2\cos(\theta_1 + \theta_2) + L_3\cos(\theta_1 + \theta_2 + \theta_3) & L_3\cos(\theta_1 + \theta_2 + \theta_3) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_2 \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$

For lengths from previous analysis and example angles and velocities:

$$egin{aligned} &L_1 = 8.7884\,\mathrm{cm}, L_2 = 4.9784\,\mathrm{cm}, L_3 = 4.2672\,\mathrm{cm}\ & heta_1 = 56^\circ, heta_2 = -28^\circ, heta_3 = -10^\circ\ & heta_1 = 30^\circ/\mathrm{s}, \dot{ heta}_2 = 10^\circ/\mathrm{s}, \dot{ heta}_3 = -10^\circ/\mathrm{s} \end{aligned} egin{aligned} &egin{aligned} &egin$$

This equation can be iteratively solved for the velocity vector of the fingertips

Gear Teeth and Speed Calc

Gear Ratio of 2:1

- Higher torque, more precise, slower movement.
- Gear teeth are 40 and 20 teeth

Input Speed of 278 RPM (from a previous calculation)

$$GR = rac{ ext{Output Speed}(\omega_o)}{ ext{Input Speed}(\omega_i)} \ GR = rac{Z_o}{Z_i}$$

$$\omega_o=rac{278}{2}=139~{
m RPM}$$

Tendon Pulley Analysis

Tendon Material: PBO Young's Modulus: 270 GPa S(ut): 5800 MPa Se': 2900 MPa F-max = 40N Tendon Diameter: 0.25mm

Tension Stress:

 $\sigma_{\mathrm{tension}} = rac{40\,\mathrm{N}}{0.049\,\mathrm{mm}^2} = 816\,\mathrm{MPa}$

Bending Stress:

 $\sigma_{ ext{bend}} = 270,000 \cdot rac{0.25}{25} = 2,700 \, ext{MPa}$

Pulley Diameter:

 $D \geq 0.25 \cdot rac{270,000 imes 2}{5,800} = 0.25 imes 93.1 = 23.3 \, {
m mm}$

Cross Sectional Area:

$$A=rac{\pi}{4} imes (0.25)^2=0.049\,{
m mm}^2$$

Total Stress:

 $\sigma_{\mathrm{total}} = 816 + 2,700 = 3,516\,\mathrm{MPa}$

Stress ratio:

$$rac{3,516}{2,900}=1.21$$
 $ightarrow$ ~10⁴ cycles

David 15

Forward Kinematics of a 3-Link Finger with Splaying Motion

Givens:

•
$$L_1=3.46$$
 in, $L_2=1.96$ in, $L_3=1.68$ in

•
$$heta_1=0^\circ$$
, $heta_2=-90^\circ$, $heta_3=-45^\circ$, $\phi=15^\circ$

First Joint:

$$egin{aligned} x_1 &= L_1\cos(heta_1) = 3.46\cos(0) = 3.46\ y_1 &= L_1\sin(heta_1) = 3.46\sin(0) = 0 \end{aligned}$$

 $z_1 = 0$

Second Joint:

$$egin{aligned} x_2 &= x_1 + L_2\cos(heta_1 + heta_2) = 3.46 + 1.96\cos(-90) = 3.46 \ y_2 &= y_1 + L_2\sin(heta_1 + heta_2) = 0 + 1.96\sin(-90) = -1.96 \ z_2 &= 0 \end{aligned}$$

Final Position:

 $(x_3, y_3, z_3) = (2.314, -3.106, 0.435)$

End Effector:

$$egin{aligned} x_3 &= x_2 + L_3\cos(heta_1 + heta_2 + heta_3)\cos(\phi) \ &= 3.46 + 1.68\cos(-135)\cos(15) = 2.314 \ &y_3 &= y_2 + L_3\sin(heta_1 + heta_2 + heta_3)\cos(\phi) \ &= -1.96 + 1.68\sin(-135)\cos(15) = -3.106 \ &z_3 &= z_2 + L_3\sin(\phi) = 1.68\sin(15) = 0.435 \end{aligned}$$

Justin ¹⁶

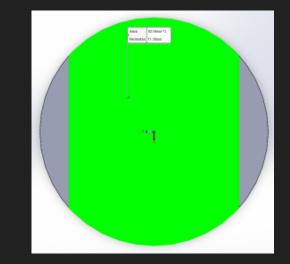
Pin Shear Stress Recalculation

Shear force is sum of F_t+F_a \bullet

0

$$F_{t}$$
 is from tendon

by the second section
$$V = F_t + F_g$$


- F_a is external load at fingertip
- F_{t} is a result of the torque at a given joint and the lacksquarelength of the moment arm
- Shear stress is a result of shear force divided by cross sectional area
- Smallest cross sectional area as determined by Solidworks
- Final expanded shear stress equation \bullet in terms of torque, radius of moment arm, force at fingertip, and diameter of joint

$$F_t = rac{T}{r}$$
 $au = rac{V}{A}$

$$au = rac{\left(rac{T}{r} + F_g
ight)}{lw}$$

Shear Stresses on Joints cont.

- F_q from forces in finger distribution (pres 1)
 - Clients are less interested in strength so forces are halved

$ au = rac{\left(rac{T}{r} + F_g ight)}{r}$	Joint ∨ ≠	# Torque (T) (Nm) 🗸	# Shear Force V (N) 🗸	# Shear Stress τ (MPa) 🗸
lw	Thumb 1	2.225	266.975	26.28
	Thumb 2	1.335	177.975	17.52
shear is apx 26 MPA	Thumb 3	0.665	110.975	10.92

• Carbon fiber has similar shear strength

Max

Calculation Table

Table 5: Summary	of calculations			
Calculation	Equation(s)	Application	Requirement Met	Validation
Projectile	$x_f = x_0 + v_{0x}t$	Catching a ball	Dexterity and	Dynamics
motion	$x_f = (v^2 \sin 2 theta)/g$		reaction speed	Assumptions
Finger tip joint	theta _{Tp} =.667theta _{Mid} theta _{Tp} =.556theta _{Mid}	Coding, ease of	Biomimetic	Speculation
inference	theta _{Tp} =.333theta _{Mid}	design, mechanical	and natural motion	Grip Angles
		linkages		
Motor Speed	$\omega = \frac{d}{rt}$	For Motor	Hand	Speculation
	$\omega = \frac{1}{rt}$	Selection	actuation speed	Reaction time
Shear Stress	$V - \frac{T}{T} + F$	For material	Number of	Speculation
	$V = \frac{r}{r} + F$	selection for	actuations	Average Material
	$\tau = \frac{F}{A}$	joints		0
Finger tip	$x = L_1 \cos heta_1 + L_2 \cos(heta_1 + heta_2)$ $y = L_1 \sin heta_1 + L_2 \sin(heta_1 + heta_2)$	Finding location	Control of	Implementing code
location (x,y)	$y = x_1 \sin v_1 + x_2 \sin (v_1 + v_2)$	of fingertip in terms of the base joint	the fingers	Real finger lengths
Hand	N/A	Have exact	Average	Speculation
Measurements		measurements of joints and segments	hand size and upper limit	Average Measurements
Power	$P = V^*I$	Power consumption	Reasonable power consumption	Equations used agree with what was learned in PHY 262, EE188
			-	Compare results to power consumption of real world electrical devices
Motor Torque	F = ma $T = Fr$	Inform motor selection	Establish minimum required motor torque	Equations and their application agree with the basic principles of static analysis
				Required motor torque agrees with reason

Tyler 19

Design Validation

Most critical components are servos, motors, and angle sensors, according to the RPN values:

Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Potential Causes and Mechanisms of Failure		Recommended Action
1 Fingers/Frame	Force-induced deformation Impact deformation	Breaking of fingers and frame	Overstressing, high impact loads	36	Select strong material
					Choose appropriate commercial bearings or
2 Bearings	High-cycle Fatigue Temp-induced deformation	High friction, inaccurate actuation	Inadequate venting, cyclic failure	60	explore bushing joints
3 Pulleys	High-cycle Fatigue Force-induced deformation	Moderate to severe inability of actuation	High impact loads, cyclic failure	36	Select or machine strong pulleys
4 Tendon Cord	Ductile Rupture	Inability of operation	Inadequate routing, high stress loads	147	Select a strong but flexible tendon cord
5 Tendon Housing	Abrasive wear	Lack of protection for tendon cords	Inadequate routing, cyclic failure	50	Ensure flexibility in cable housing
6 Servos	High-cycle Fatigue	Limited DoF	Suboptimal power supply, cyclic failure, faulty wiring	252	Select high quality servos
7 Motors	High-cycle Fatigue	Moderate to severe inability of actuation	Suboptimal power supply, cyclic failure, faulty wiring	294	Select high quality motors
8 Angle Sensors	Force-induced deformation	Inability to interface	High impact loads, faulty wiring, noisy signal	336	Select accurate and high quality angle senso

Failure mitigated by selection of high quality components

Cable housing greatly reduces possibility of tendon cord ductile failure

Testing Overview

Engineering Requirement	Units	Target	Tol.	Tests
Grip Force	N	120-160	20	Have the hand statically hold dumbbells of increasing weight from 5-25 lbs based on analysis of strength
Grip Speed	ms	250-350	50	Time for 10 complete extensions and closures
Size of Average hand/forearm	cm^3	1200	400	Volume analysis in solidworks
Weight of average hand/forearm	kg	3.5	1	Weighing apparatus on scale
Cost of Manufacturing	\$	1500	250	Total price of each part in final design
Many DOF	#	20	1	Count DOF in final design
Easy to power	V	120	0	Plug into wall outlet and operate
Easy to use interface	min	10	5	Teach each client individually and time how long until they are confident to run and test independent of instructor
Precise and Accurate Motion	mm	1	.5	Pick positions in 3d space and determine accuracy. Play the piano
Longevity	#	10,000	250	Use a single finger to fully close and open until it fails

21

Schedule

TASK	ASSIGNED TO	PROGRESS	START	END	EST. HOURS	ACTUAL HOURS
Phase 1 (1st Prototype Demo)						
Work on Presentation 1	Team	100%	1/27/25	2/10/25	10.00	20.00
Establish Finger Design	Team	100%	2/4/25	2/18/25	30.00	40.00
Establish Control Scheme	Joseph, Noah	100%	2/4/25	2/18/25	10.00	20.00
Order Preliminary Parts	Justin	75%	2/18/25	2/21/25	1.00	
Presentation 2	Team	100%	2/18/25	3/2/25	10.00	40.00
Joint Prototype	Team	100%	2/18/25	3/31/25	40.00	50.00

Phase 2 (Phalange Prototype)						
Report 1	Team	100%	3/1/25	3/9/25	30.00	40.00
Website Check 1	David, Markus	100%	2/25/25	3/9/25	10.00	25.00
Analysis Memo	Team	100%	3/1/25	3/21/25	20.00	30.00
Presentation 3	Team	100%	3/9/25	3/31/25	10.00	50.00
Finger Prototype	Team	95%	2/18/25	3/31/25	60.00	
1st Prototype Demo	Team	100%	2/1/25	3/31/25	5.00	20.00
Phase 3 (Whole Hand)						
Report 2	Team	0%	4/1/25	4/18/25	20.00	
Final CAD and Final BOM	Tyler, Noah	0%	4/1/25	4/25/25	10.00	
2nd Prototype Demo	Team	0%	4/1/25	4/28/25	5.00	
Website Check 2	David, Markus	0%	4/1/25	5/4/25	10.00	
Whole hand Prototype	Team	0%	4/1/25	4/31/25	60.00	

Schedule

Phase 4 (Startup of 486C)						
Project Management for 486C	Team	0%	4/1/25	5/2/25	10.00	
Project Management	Team	0%	8/28/25	8/30/25	10.00	
Engineeering Calculations	Team	0%	8/28/25	9/4/25	10.00	
Double check Prototype and adjust	Team	0%	8/28/25	9/31/25	30.00	
Phase 5 (Building)						
Hardware Status Update - 33%	Team	0%	8/28/25	9/25/25	60.00	
Hardware Status Update - 67%	Team	0%	8/28/25	10/16/25	60.00	
Hardware Status Update - 100%	Team	0%	8/28/25	11/6/25	60.00	
Phase 6 (Collection of Stuff)						
Website Check 3	David, Markus	0%	8/28/25	10/9/25	10.00	
Finalized Testing plan	Team	0%	10/16/25	10/30/25	10.00	
Final CAD Packet	Team	0%	11/1/25	11/20/25	5.00	
Final Report & Final Website check	Team	0%	11/1/25	11/27/25	30.00	

Phase 7 (E-Fest)					
UGrads registration	Team	0%	10/23/25	10/24/25	1.00
Draft of poster	Team	0%	10/1/25	10/30/25	15.00
Final Poster & PPT	Team	0%	11/1/25	11/13/25	20.00
Presentation	Team	0%	12/8/25	12/8/25	5.00
Conclusion					
Initial Testing Results Video	Team	0%	11/6/25	11/20/25	5.00
Product demo	Team	0%	11/6/25	11/27/25	5.00
Client Handoff	Team	0%	12/11/25	12/11/25	1.00

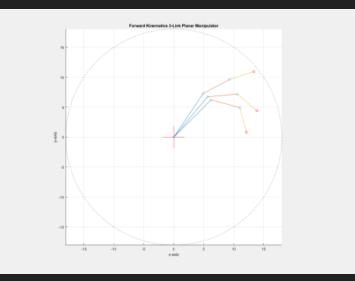
Tyler 23

Budget

	Budget Robotic Hand											
	Total Budget											
Item #	Item	Description	Planned Aquisiton Date	Actual Acquisiton Date	Price Per Unit	# of Units	Estimated Total Price	Actual Total Price				
	Matan	Motor with AS5048A										
1	Motors	Encoder	4/14/2025		\$42.97	8	\$343.76					
2	Motors	INJORA INJS035 35KG	4/14/2025		\$16.99	6	\$101.94					
	Breadboard	4PCS breadboard kit	4/14/2025		\$6.78	1	\$6.78					
	Wiring	22 guague Silicon wire	4/14/2025		\$19.13	1	\$19.13					
	Potentiameter	Angle sensors	4/14/2025		\$1.34	20	\$33.55					
3	Filament	PLA Prototyping Filament	4/14/2025		\$14.99	1	\$14.99					
5	Filament	Onyx Filament	4/14/2025		\$209	1	\$209					
6	Filament	50cc Carbon Fiber Spool	4/14/2025		\$150	1	\$150					
7	Computation	Arduino Mega	4/14/2025		\$49.65	1	\$49.65					
8	Actuation	Dyneema Cord	4/14/2025		\$32.99	1	\$32.99					
9	Actuation	Bearings	4/14/2025		\$7.17	15	\$107.55					
	Estimated Remaining Budget											
			Actu	al Remaining budget				\$2,000				

Virtual Prototype

A MATLAB code was implemented to simulate 3-Link forward kinematics


The script utilizes a function to take 6 inputs: L1, L2, L3, theta1, theta2, and theta3

Using lengths and angles from previous analyses, the outputs are show below for different angles:

>> fkinematics(8.7884, 4.9784, 4.2672, 56, -28, -10)
The position of the end-effector is (13.368426, 10.941768) and orientation is(18.000000)
>> fkinematics(8.7884, 4.9784, 4.2672, 50, -45, -45)
The position of the end-effector is (13.877395, 4.423298) and orientation is(-40.000000)
>> fkinematics(8.7884, 4.9784, 4.2672, 45, -60, -60)
The position of the end-effector is (12.127535, 0.804034) and orientation is(-75.000000)

Virtual Prototype

The outputs for each input are shown below in a graph:

This virtual prototype informs the design and data collection of the interface software

Joseph Humanoid Hand 3/31/25 26

Physical Prototype

- > How does it function?
 - Raspberry Pi uses the control flow mentioned previously to sweep through the range of motion

 The sweep is performed by gradually increasing and decreasing the pulse width

References

[1] juecoreein S. • 3 years ago, "Forward and Reverse Kinematics for 3R Planar Manipulator," Hive, Dec. 21, 2020. https://hive.blog/hive-196387/@juecoree/forward-and-reverse-kinematics-for-3r-planar-manipulator (accessed Mar. 31, 2025).