Tensegrity Medical Device – 67% Update

_Alicia Corona, Claire Mitchell, Norma Munoz

Project Description

- Utilize photo biomodulation (PBM) technology
- Red LED lights, infrared sensors, & rechargeable battery
- Design a cutting-edge tool that monitors
 blood flow & oxygen circulation
- Offers a non-invasive solution for cardiovascular health monitoring

- Enhances cellular function, promotes tissue repair, and reduces inflammation
- Applicable to medical institutions, rehab centers, military, and sports teams
- Partnering with EE & CS Capstone to enhance teamwork skills
- Jesslynn Armstrong, President, Light Matter Solutions, LLC

Alicia, Slide 1

Overview

- Have a top encasing designed and printed
- Used PCBs we found online and soldered them in parallel along with our LEDs and resistors
- Code for lights, button timer, frequency, Heart rate monitoring, and temperature reading
- Using an UNO board currently to control the LEDs

Code – Lights Modes

- Only going to be used if we use one of the digital pins
- For the basic set up we are only using the 5V output pin

🥯 sketch_feb25b Arduino 1.8.19	_		×
File Edit Sketch Tools Help			
			P
sketch_feb25b §			
<pre>const int ledControlPin = 2; // The single control pin f void setup() { pinMode(ledControlPin, OUTPUT); // Set the control pin }</pre>	or all as an	LEDs output	
<pre>void loop() { digitalWrite(ledControlPin, HIGH); // Turn LEDs ON }</pre>			

sketch_feb25b §

// Defined pins for LEDs

const int ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Array for LED pins const int buttonPin = A0; // Button connected to analog pin A0 (or use any digital pin) bool ledState = false; // Variable to track LED state

Code – Button Timer

- All we need to move forward with this design is to finalize placement
- We have the 10KOhm resistor as well as the wires to power and fix it into the board

```
bool ledState = false; // Variable to track LED state
bool lastButtonState = LOW; // Variable to store previous button state
unsigned long lastPressTime = 0; // Stores the time when the button was last pressed
const unsigned long autoOffTime = 600000; // 10 minutes in milliseconds
```

```
void setup() {
   // Set LED pins as output
   for (int i = 0; i < 12; i++) {
      pinMode(ledPins[i], OUTPUT);
   }
</pre>
```

pinMode(buttonPin, INPUT); // Set button pin as input

```
void loop() {
    bool buttonState = digitalRead(buttonPin); // Read button state
```

```
// Check for button press (state change from LOW to HIGH)
if (buttonState == HIGH && lastButtonState == LOW) {
   ledState = !ledState; // Toggle LED state
   lastPressTime = millis(); // Update the last press time
   delay(200); // Debounce delay
```

lastButtonState = buttonState; // Update last button state

```
// Check if 10 minutes have passed since the last button press
if (ledState && (millis() - lastPressTime >= autoOffTime)) {
   ledState = false; // Turn off LEDs automatically
}
```

```
// Set all LEDs based on ledState
for (int i = 0; i < 12; i++) {
   digitalWrite(ledPins[i], ledState ? HIGH : LOW);</pre>
```

Code -Frequency

- Plus 38 more lines of code
- The purpose is to demonstrate the different frequencies our client wants to include in the final

frequency_arduino

```
// Define pins 2-12 for LEDs
const int ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
const int numPins = 11;
```

```
float frequency = 1.0; // Default frequency in Hz
unsigned long intervalMicros = 500000; // Default: 1 Hz (500ms = 500000us)
unsigned long previousMicros = 0;
bool ledState[numPins] = {LOW}; // Array to store the state of each LED
```

```
void setup() {
```

```
// Set up all pins 2-12 as OUTPUT
for (int i = 0; i < numPins; i++) {
    pinMode(ledPins[i], OUTPUT);
}
Serial.begin(9600);
Serial.println("Enter a number (1-7) or a custom frequency in Hz:");</pre>
```

```
}
```

```
void loop() {
 // Check for user input from Serial Monitor
 if (Serial.available() > 0) {
   float input = Serial.parseFloat(); // Read input as float
   if (input > 0) {
     int selection = int(input); // Convert to int for switch case
     switch (selection) {
       case 1:
         frequency = 73;
         break;
       case 2:
         frequency = 147;
         break;
        case 3:
         frequency = 294;
         break;
```

Code – Heart Rate Monitoring

- Plus 65 lines more of code

/*

1

2

3

4

5

7

8 9

10

11

12

13 14

15

16

- Optical Heart Rate Detection (PBA Algorithm) using the MAX30105 Breakout
- By: Nathan Seidle @ SparkFun Electronics
- Date: October 2nd, 2016
- https://github.com/sparkfun/MAX30105_Breakout
- This is a demo to show the reading of heart rate or beats per minute (BPM) using a Penpheral Beat Amplitude (PBA) algorithm.
- It is best to attach the sensor to your finger using a rubber band or other tightening device. Humans are generally bad at applying constant pressure to a thing. When you press your finger against the sensor it varies enough to cause the blood in your finger to flow differently which causes the sensor readings to go wonky.
- Hardware Connections (Breakoutboard to Arduino):
- -5V = 5V (3.3V is allowed)
- -GND = GND
- -SDA = A4 (or SDA)
- 19 -SCL = A5 (or SCL)
 - -INT = Not connected
- 20 21 22

23

- The MAX30105 Breakout can handle 5V or 3.3V I2C logic. We recommend powering the board with 5V
- but it will also run at 3.3V.
 */
- 24
- 25
- 26 #include <Wire.h>
- 27 #include "MAX30105.h"
- 28
- 29 #include "heartRate.h"
- 30

Code – Temperature reading

- Plus 31 more lines of code

/* 1 MAX3010 Breakout: Read the onboard temperature sensor 2 By: Nathan Seidle @ SparkFun Electronics 3 Date: October 20th, 2016 4 https://github.com/sparkfun/MAX30105 Breakout 5 6 This demo outputs the onboard temperature sensor. The temp sensor is accurate to +/-1 C but 7 has an astonishing precision of 0.0625 C. 8 9 Hardware Connections (Breakoutboard to Arduino): 10 -5V = 5V (3.3V is allowed) 11 12 -GND = GND-SDA = A4 (or SDA) 13 -SCL = A5 (or SCL) 14 15 -INT = Not connected 16 The MAX30105 Breakout can handle 5V or 3.3V I2C logic. We recommend powering the board with 5V 17 but it will also run at 3.3V. 18 */ 19 20 #include <Wire.h> 21 22 #include "MAX30105.h" //Get it here: http://librarymanager/All#SparkFun MAX30105 23 MAX30105 particleSensor; 24 25 void setup() 26 \sim 27 Serial.begin(9600); 28

Case Design – CAD

Norma, Slide 8

EE – Before and After

Purchasing Plan

#	Part Name	Quantity Needed	Purchase Quantity	Quantity Arrived	Price	Total Unit Price	Ordered (Y/N)	Notes
1	Multiplexer Switch ICs	10	10	10	\$1.39	\$9.15	Y	
2	Resistors (1500 pcs)	1	1	1	\$7.99	\$7.99	Y	
3	SMD Capacitors (720 pcs)	1	1	1	\$7.99	\$7.99	Y	
4	Red LEDs	16	16	16	\$0.44	\$7.04	Y	
5	Infrared LED	32	32	32	\$6.67	\$66.70	Y	
6	PPG Sensor	1	1	1	\$15.90	\$15.90	Y	
7	HUZZAH32 - ESP32 Feather Board	2	2	2	\$24.50	\$49.00	Y	
8	Custom PCB	1	1	0	\$64.79	\$64.79	N	PCBs have been paid for and sent to manufacturer
9	Lithium Ion Polymer Battery	1	1	0	\$9.99	\$9.99	N	
10	Flexible Lithium Polymer Battery	1	1	0	Need quote	N/A	N	
11	TPU 95A HF	1	1	1	\$41.99	\$41.99	Y	
		Percent Purchased	96.44	%	Total Spent	\$280.54	Total on Hand	92.64705882 9
		Budget Spent	56.108	%	Total Budget	\$500.00		

Manufacturing Plan

- ME portion 64%
- Entire capstone 72%

Part	Time [hours[Manufacturing Method	Quantity	Progress %
Custom PCB	2	Ordered- Third party provider	19	100% (Design) 80% (Manufactured)
Wiring Components	3	Soldering Kit	38	85%
LED Components	3	Manufactured w/ PCB	95	95%
Casing - inner	~ 4	3D Printed	2	50%
Casing - outer	~ 4	3D Printed	2	50%
Adhesive	-	Ordered- Third party provider	1	0%

- some design revisions are in order especially for casing component.
- Implementing an incircuit system configured in series instead of parallel
- enabling Bluetooth integration with the designated app for the device
 - Collaborated with Computer Science
- Finalize material selection for Adhesive

Norma, Slide 11

Gantt Chart

TASK	TASK	TASK	START	DUE	DURATION	PCT OF TASK	K WEEK 5 WEEK 6		WEEK 6				WEEK 6					WEEK 7					WEEK 7			WEEK				Т		WEEK	9			WEEK	K 10	
ID	TITLE	OWNER	DATE	DATE	IN DAYS	COMPLETE	м	T W R F		FM	Т	w	Т	F	M 1	r w	Т	F	м	Т	w	T I	• N	۸ T	w	Т	F	мт	w	Т	F							
1	Kickoff Meetings					100%																																
2	Hardware Status Update (33%)					100%																																
3	Hardware Status Update (67%)	ME				100%																																
3.1	Order remaining materials	All	02/14/25	02/21/25	7	100%																																
3.2	Begin wiring circuit	ME & EE	02/14/25	02/17/25	3	100%																																
3.3	3-D Print Other half of casing	Norma	02/13/25	02/22/25	9	80%																																
3.4	Finish wiring	ME & EE	02/18/25	02/23/25	5	70%																																
3.5	On/off	ME & EE	02/18/25	02/23/25	6	0%																																
4	Website Check 2	ME	02/19/25	02/21/25	3	100%																																
5	UGRADs					0%																																
5.1	Draft of Abstract		02/25/25	02/28/25	3	20%																																
5.2	Final Edit of Abstract		03/03/25	03/05/25	3	0%																																
5.3	Register & turn in Abstract		03/06/25	03/06/25	0	0%																																
6	Product Testing					0%																																
6.1	Draft Testing Plan	All				0%																																
6.2	Finalize Testing Plan	All				0%																																
						0%																																

Alicia, Slide 12

Thank You, Questions?