# Robot for Remote Catheter Guidance through Blood Vessel Models

Gray Becker Joshua Hernandez Joshua Parra



## Background

- The Bioengineering Devices Lab researches stroke treatment in blood vessels
- Research involves use of x-rays
- Project Goal: design, build, and test a robotic system that can translate and rotate a catheter into a benchtop vessel model remotely
- Budget: \$5000
- Sponsor: Dr. Tim Becker



Figure 1. In vitro Circle of Willis blood vessel model attached to pressure sensors [1]

#### **Customer Requirements**

- CR1: Translation and rotation of catheter
- CR2: Pre-programmed or controlled remotely
- CR3: Measure data instantaneously
- CR4: Emergency stop system
- CR5: Level the introducer and system to prevent kinking
- CR6: Force measurement equipment easy to replace
- CR7: Mechanism to prevent load cell damage
- CR8: Easy to disassemble/reassemble, transport case
- CR9: Force and distance calibrations
   and testing

#### **Engineering Requirements**

- ER1: Translation of catheter at least 2 ft
- ER2: Rotation of catheter at least 360 degrees
- ER3: Remote controlled from at least 10 ft away
- ER4: Sampling rate frequency between 5-30 Hz
- ER5: Handle catheter sizes between 2-15 French (1 F = 3 mm)
- ER6: Measure push resistance force between 0.1-10 N
- ER7: Measure displacement of catheter with resolution of at least 0.1 mm
- ER8: System noise/tolerance: ± 0.05 N
- ER9: Total size under 1 cubic foot
- ER10: Temperature below 60°C

| Translate catheter over distance |   |            |            |            |            |   |   |  |
|----------------------------------|---|------------|------------|------------|------------|---|---|--|
| Full rotation of catheter        | 3 | $\searrow$ |            |            |            |   |   |  |
| Controlled from a distance       | 1 |            | $\searrow$ |            |            |   |   |  |
| Fast sampling rate               |   | 3          | 3          | $\searrow$ |            |   |   |  |
| Handle variable diameters        |   | 1          |            |            | $\searrow$ |   |   |  |
| Measure push resistance          | 1 |            |            | 3          | 1          |   |   |  |
| Measure displacement resolution  | 9 |            |            | 3          |            |   |   |  |
| Low system noise/tolerance       |   |            | 1          | 9          |            | 3 | 3 |  |
| Limited volume                   | 1 |            | 1          |            |            | 1 | 1 |  |

Table 1. House of quality correlations [2]

| Table | 2. | House  | of | quality | [2] |
|-------|----|--------|----|---------|-----|
| Table | ~. | 110030 | οj | quanty  | l-J |

| Table 2. House of quality [2]                     |                     |                        | Technical Requirements       |                        |                  |                                 |                               |                                            |                     |                     | Cus                     | Customer Opinion Survey |       |                    | 1              |                |        |
|---------------------------------------------------|---------------------|------------------------|------------------------------|------------------------|------------------|---------------------------------|-------------------------------|--------------------------------------------|---------------------|---------------------|-------------------------|-------------------------|-------|--------------------|----------------|----------------|--------|
| Customer Needs                                    | Customer<br>Weights | T ranslate<br>catheter | Full rotation<br>of catheter | Controlled<br>remotely | Fast<br>sampling | Handle<br>variable<br>diameters | Measure<br>push<br>resistance | Measure<br>displace-<br>ment<br>resolution | Low system<br>noise | Limited<br>volume   | Moderate<br>temperature | I Poor                  | ¢0    | Acceptabl<br>e     | 4              | 5<br>Excellent | Unsure |
| Translation and rotation of catheter              | 1                   | 9                      | 9                            | 1                      | 3                | 3                               |                               | 9                                          | 3                   |                     | 3                       |                         |       | А                  |                | B C            |        |
| Pre-programmed or controlled remotely             | 1                   | 3                      | 3                            | 9                      |                  |                                 | 1                             |                                            | 3                   |                     | 3                       |                         | А     |                    |                | B C            |        |
| Measure data instantaneously                      | 3                   | 1                      | 1                            |                        | 9                | 1                               | 3                             | 3                                          | 9                   |                     |                         |                         |       |                    |                | A C            | В      |
| Emergency stop system                             | 2                   |                        |                              | 3                      |                  |                                 |                               |                                            | 1                   |                     |                         |                         |       | C                  |                | Α              | В      |
| Level introducer and system to prevent kinking    | 3                   |                        |                              |                        |                  |                                 | 9                             |                                            |                     |                     |                         |                         |       |                    |                | А              | B C    |
| Force measurement equipment easy to replace       | 4                   |                        |                              |                        |                  |                                 | 3                             |                                            |                     | 1                   |                         |                         |       | А                  |                |                | B C    |
| Mechanism to prevent load cell damage             | 3                   |                        |                              |                        | 3                |                                 | 3                             |                                            | 1                   |                     |                         |                         |       |                    | А              |                | B C    |
| Easy to disassemble/reassemble,<br>transport case | 5                   |                        |                              | 1                      |                  |                                 |                               |                                            |                     | 9                   |                         | А                       |       | C                  |                | В              |        |
| Force and distance calibrations and testing       | 3                   | 3                      | 3                            |                        | 1                | 3                               | 3                             | 3                                          |                     |                     |                         |                         |       | C                  |                | А              | В      |
| Technical Requirement Units                       |                     | ft                     | degree                       | ft                     | Hz               | Ц                               | lbf                           | in                                         | lbf                 | ft^3                | щ                       | Legend                  |       | System             | n name         | e              |        |
| Technical Requirement Targets                     |                     | 2                      | 360                          | 10                     | 5 to 30          | 2 to 15                         | 0.0225-<br>2.25               | 0.0034                                     | 0.0112              | $\overline{\nabla}$ | <140                    | А                       |       | nterver<br>ng equi |                | device<br>3000 |        |
| Absolute Technical Importance                     |                     | 24                     | 24                           | 21                     | 42               | 15                              | 67                            | 27                                         | 38                  | 49                  | 6                       | В                       | Micro |                    | edical:<br>bot | Liberty        |        |
| <b>Relative Technical Importance</b>              |                     | 1                      | 2                            | 3                      | 8                | 4                               | 7                             | 9                                          | 6                   | 10                  | S                       | C                       |       | Haptic             | Visio          | 1              |        |

# **Benchmarking**

- Autonomous Robotic Intracardiac Catheter Navigation Using Haptic Vision [3]
  - Controls
  - Force sensor
- Machine Solutions IDTE 3000 [4]
  - Servo rollers
  - Measurement controls
- Microbot Medical: Liberty Robot [5]
  - Remote
  - Portable

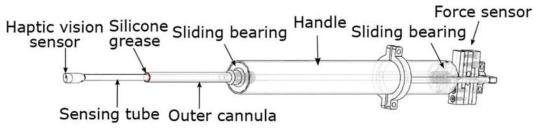



Figure 2. Haptic vision force sensor diagram [3]

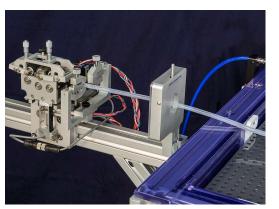



Figure 3. Machine Solutions IDTE [4]



Figure 4. Microbot Liberty device and controller [5]

### Literature Review – Josh P.

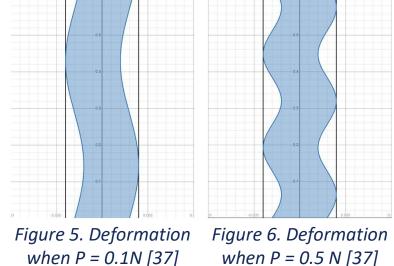
| LabVIEW Fundamentals [6]                                                        | Manual and tutorial on how to use LabVIEW, useful for programming                                               |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Machinery's Handbook (pg. 754-1003) [7]                                         | Covers common material properties and testing methods, useful for material selection                            |
| Friction characteristics and servo control of a linear peristaltic actuator [8] | Discusses solution to non-linear pneumatics, useful if using pneumatics in design                               |
| Prevention of Servo-Induced Vibrations in Robotics [9]                          | Explains how to minimize vibrations in robotic systems, useful to reduce<br>unnecessary motion                  |
| Software interfacing of servo motor with microcontroller [10]                   | Describes how to program a servo motor with MATLAB and a microcontroller, useful for programming motor controls |
| ISO 25539-1:2017 [11]                                                           | Standard that covers conditions for tests of endovascular devices                                               |
| ViVitro Labs Catheter Testing and Delivery<br>System Testing [12]               | Provides examples of procedures for different catheter tests                                                    |
| The six factors you need to consider when picking a force sensor [13]           | Lists important considerations of using a force sensor                                                          |
| ASTM-D2240-Durometer-Hardness [14]                                              | Outlines testing definitions for rubber hardness, informs decision for rollers in contact with catheter         |
| SAE J300 [15]                                                                   | Standard for lubrication and engine oil, useful for bearing selection                                           |

### Literature Review – Josh H.

| Handbook to electric motors, 2 <sup>nd</sup> ed. Chapter 2: types of motors and their characteristics [16]             | Motors for special applications, stepper motor uses in different projects                                               |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| NEMA standard for stepper motors [17]                                                                                  | Common standard pertaining to motor size and dimensions                                                                 |
| Electromate stepper motor catalog [18]                                                                                 | Information on all motors using the NEMA standard, useful for determining best option for project                       |
| Selection of Microcontroller board and stepper<br>motor driver for FDM 3D printing to reduce power<br>consumption [19] | Discusses microcontrollers and drivers for stepper motors, informs choice of<br>controller with power consumption       |
| Handbook to electric motors, 2 <sup>nd</sup> ed. Chapter 3:<br>Motor Selection [20]                                    | Standards of motors and applications                                                                                    |
| Tech tip: How to choose and use stepper motor power supply from automationDirect [21]                                  | Online video with general guidelines for choosing an appropriate power supply, includes voltage and current information |
| Selecting the best power supply for your stepper motor or servo motor application [22]                                 | Discusses different types of power supplies in technical detail, helpful for selection based on different applications  |
| A design of the automatic anti-collision system [23]                                                                   | Embedded systems design to help with anti-collision, useful for emergency stop<br>function                              |
| Arduino tutorial: serial inputs [24]                                                                                   | Web article on serial inputs, how to set up, read, and provide inputs                                                   |
| Arduino interrupts tutorial [25]                                                                                       | Web article on interrupts of software or hardware for time-critical events                                              |

## **Literature Review – Gray**

| Theory and Design for Mechanical Measurements<br>7th Edition [26]                                    | Measurements, uncertainties, and mechatronics of sensors, actuators, and controls, useful for obtaining accurate and required data                    |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shigley's Mechanical Engineering Design 11th Edition<br>Chapter 19 [27]                              | Finite-element analysis of different geometries to find loads and torques to determine potential design components with high loads or torsion         |
| Modeling and Estimation of Tip Contact Force for<br>Steerable Ablation Catheters [28]                | Analysis of catheter shaft curvature to determine contact force with catheter tip                                                                     |
| Force Calibration for an Endovascular Robotic System with Proximal Force Measurement [29]            | Indirect force measurement via motor transmission of forces to catheter tip                                                                           |
| Accurate Estimation of Tip Force on Tendon-Driven<br>Catheters Using Inverse Cosserat Rod Model [30] | Relationship between catheter curvature and contact force                                                                                             |
| ISO 10555-1:2023 [31]                                                                                | Kink, torque, and tensile forces required for catheters, informs design requirements for components interacting with catheter                         |
| ZwickRoell Horizontal Testing of Catheter Systems [32]                                               | Test machine for catheter coefficient of friction and breakaway torque, example of<br>indirectly measured insertion force, track force, and lubricity |
| Nanoflex Robotics Advanced Magnetic Technology<br>[33]                                               | Use of magnetism to position and guide catheter tip through blood vessels, example of external robotic manipulation                                   |
| Fatigue and Tribological Properties of Plastics and<br>Elastomers [34]                               | Properties of plastics, polymers, and elastomers, formulae for hoop stress                                                                            |
| LabVIEW Programming Reference Manual [35]                                                            | Detailed information on LabVIEW's different functions and references to allow<br>communication between Arduino and LabVIEW via VISA functions         |


### **Column Deformation – Josh P.**

$$P_{cr} = \frac{\pi^2 \frac{\pi (R^4 - r^4)}{64} E}{L^2}$$
  
=  $\frac{\pi^2 * \frac{\pi (1.5^4 - 1^4) (mm)^4}{64} (\frac{1 m}{1000 mm})^4 * 2.6 * 10^8 Pa}{0.6096^2 m^2}$   
= 0.0014 N [36]

• Critical Load (*P<sub>cr</sub>*): max load before deformation

$$X = Csin\left(\sqrt{\frac{P}{EI}}Y\right) = 0.001m * sin\left(\sqrt{\frac{P}{5.185 \times 10^{-5}}}Y\right) [36]$$

 C = max deformation (tolerance between catheter and vein wall)



### Power Supply & Motors – Josh H.

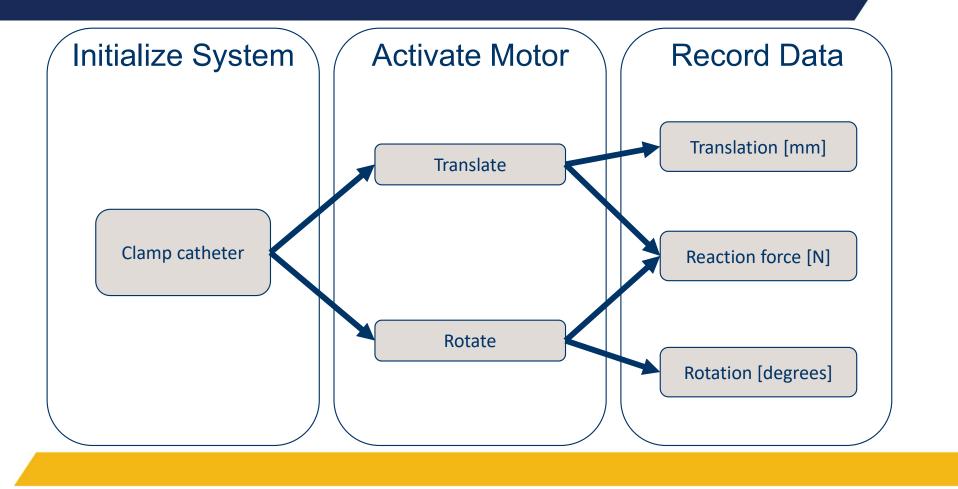
- $S = r \frac{\pi}{180^{\circ}}$
- Translation Motor
  - NEMA 17 5:1 planetary gear with 25
     mm drive roller
  - $\frac{0.39mm/step}{0.1mm/step} = 3.9:1$
  - 5:1 = 0.079 mm/step
- Rotation Motor
  - NEMA 11 with 30 mm drive roller
  - 128 sub step
  - 0.6 degrees/step

### P = VI = (24V \* 2A) \* 2 = 96 W

| 5            |                                         | 5  |     |             | 5           |            | 8         | 8        | 8                      | e .       | •   |                                       |                                 |                                       |       |
|--------------|-----------------------------------------|----|-----|-------------|-------------|------------|-----------|----------|------------------------|-----------|-----|---------------------------------------|---------------------------------|---------------------------------------|-------|
| *            | *                                       | ÷. |     | *           | 1           | 3          | *         | 1        | 1                      | 1         | •   |                                       |                                 |                                       | 1.1   |
| ĵ.           |                                         | ÷. | 0   | ÷           | ÷.          | ÷.         | ÷         | ŝ.       | ĵ.                     |           |     |                                       |                                 |                                       | 2.2   |
| *            |                                         | *  | 100 |             |             |            | *         | 22<br>28 | 2                      |           |     | Power Supply                          | /                               | ана на на<br>1                        |       |
| ÷            |                                         |    |     | ,           |             | ,          | ÷         |          |                        |           |     |                                       |                                 |                                       | • •   |
| $\mathbf{i}$ | *                                       |    |     | ÷           | ł.          |            | ×         | 1        | $\left  \cdot \right $ | 9.1       |     | ca sa sa 🌓 sa sa s                    | $(X_{i},X_{i}) \in \mathcal{K}$ | 2 (2) X X                             | × ×   |
| ۰.           | ٠                                       | ÷  | •   | ٠           | ٠           | 2          | 5         |          |                        |           | • • | 📘                                     | 1.1.1                           | 1.1.1.1                               | • •   |
| 17           |                                         | *  |     | *           |             | 2          | *         | 2        | a)                     | а.<br>1   | • • | · · · · · · · •                       |                                 | 1.000                                 | • •   |
| 1            | •                                       | *  | •   | 1           | 1           | 2          | 1         | 2        | 8                      | 3         | • • |                                       |                                 |                                       | • •   |
| Č.           | 1                                       | ÷. | 1   | ĉ           | 1           | 1          | 1         | 1        | Č.                     | 1         |     | Cton Down                             |                                 |                                       | 1     |
| ŝ.           | ÷                                       | ŝ  |     | ŝ           | ÷.          | ŝ.         | ŝ         | 2        | ŝ                      |           |     | Step Down                             | 1.1.2                           |                                       | 1     |
|              |                                         | -  |     |             |             | Ç.,        | ÷.        |          |                        |           |     |                                       | _                               |                                       |       |
| 5            | -                                       |    | 120 |             | 5           | 2          |           | 0        | 5                      |           | -   |                                       | Dri                             | vers                                  | . I   |
| Υ.           | •                                       | ÷  | r   | -           | -           | -          | -         | -        | -                      |           | 12  |                                       | 1                               |                                       |       |
| 1            |                                         | 2  | k   | r,          |             | h          | r.        | <u> </u> | II.                    | en        |     |                                       | 1.1.1                           | 10.0                                  |       |
| 1            |                                         | *  | Ľ   |             |             |            |           |          |                        |           | Γ.  | <b>.</b>                              | Mo                              | tors                                  | : :   |
| •            | •                                       | ٠  |     | •           | ٠           | ٠          | •         | ٠        | •                      | •         | •   |                                       |                                 |                                       | • •   |
| ÷            | *                                       | 8  | 00  |             | 2           |            | ÷         | 1        | ÷                      |           | • • |                                       | (A. A. (A))                     | 1 (1) (1) (1)                         |       |
| ٠            | ٠                                       | ٠  | ٠   | ٠           | ٠           | ٠          | ٠         |          | ٠                      | •         | • • | · · · · · <b>· ]</b> · · <b>·</b> · · | 1.1.1                           |                                       | • •   |
| ÷.,          | -                                       |    |     |             |             | 3          |           | 1        | *                      | a - 1     | 1   |                                       | <b>1</b> · · · ·                |                                       | • •   |
| 2            | •                                       | 2  | •   |             | 5           |            | <u>.</u>  | 12       |                        |           | ·   | Microcontoller                        |                                 |                                       | • •   |
|              |                                         |    |     |             |             |            |           |          |                        |           |     |                                       |                                 |                                       |       |
|              |                                         |    |     | -           | 2           | а<br>ж     |           |          | ì                      |           | :   |                                       |                                 |                                       |       |
| 1            | •                                       | *  | •   | ł           | 1           | •          | -         | 4        |                        | •         |     |                                       |                                 |                                       |       |
|              | •                                       |    | •   | * *         | 1 1 1 1     |            |           | •        | •                      | •         |     |                                       |                                 | · · · · ·                             | •••   |
|              | • • • • •                               |    |     | * * *       | 1 1 1 1 1 1 | • • • •    |           |          | * * * * *              | • • • •   |     |                                       |                                 |                                       | •••   |
| * * * * * *  | ••••••••••••••••••••••••••••••••••••••• |    |     |             |             |            | • • • • • |          |                        | • • • • • |     |                                       |                                 | · · · · ·                             | • •   |
| * * * * * *  | •••••                                   |    |     | * * * * * * |             | 0.101101.0 |           |          |                        |           |     | Sensors                               |                                 | · · · · · · · · · · · · · · · · · · · | · · · |

Figure 7. Power supply tree breakdown

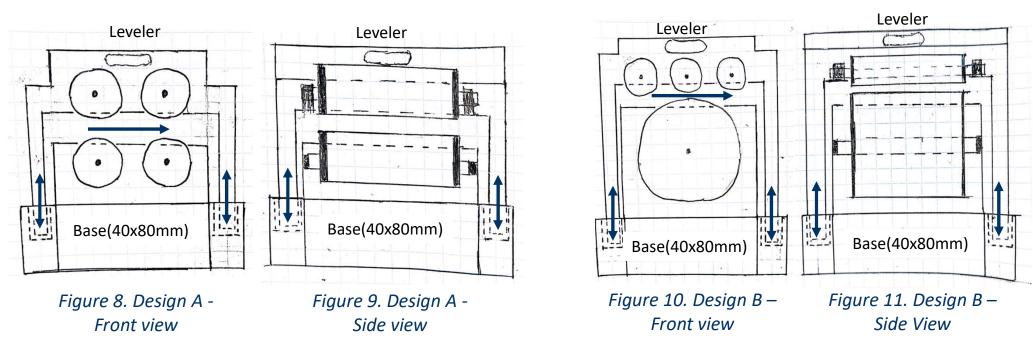
### **Clamping Forces – Gray**


- Finding cross-sectional area of undamaged, clamped catheter
  - Push force:  $F_{fmax} = 10 N$
  - Coefficient of friction (est. worst case):  $\mu = 0.1$

• 
$$F_N = \frac{F_f}{\mu} = \frac{10 N}{0.1} = 100 N$$

• 55D Pebax:  $\sigma_y = 12 MPa$  [38]

• 
$$A_c = \frac{F}{\sigma} = \frac{100 N}{12 \times 10^6 Pa} = 8.33 \times 10^{-6} m^2 = 8.33 mm^2$$
  
•  $d = 2 \times \sqrt{\frac{A_c}{\pi}} = 2 \times \sqrt{\frac{8.33 mm^2}{\pi}} = 3.26 mm \approx 10 F$ 


### **Functional Decomposition**



### **Concept Generation: Translation**

#### Design A1

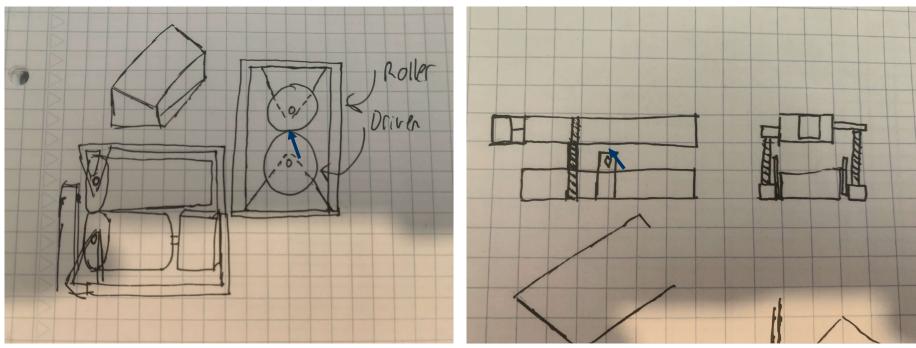
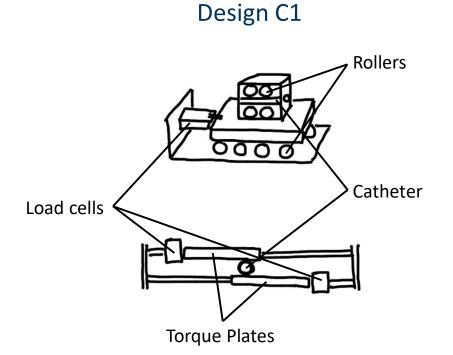
#### Design A2



### **Concept Generation: Rotation**

Design B1

Design B2

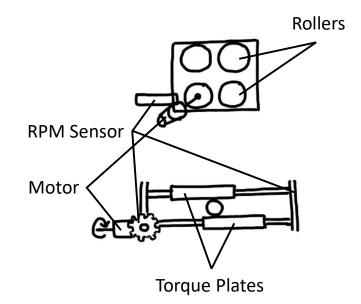
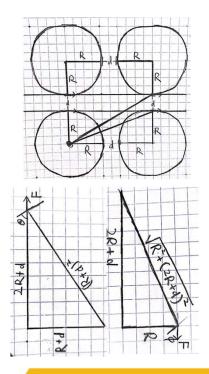


Figure 12. Roller Rotator

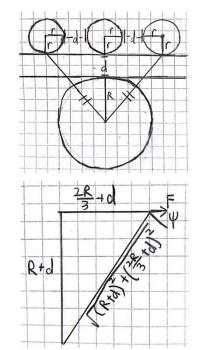
Figure 13. Friction plane rotator

### **Concept Generation: Sensors**









Design C2



### **Engineering Calculations**

#### Translation





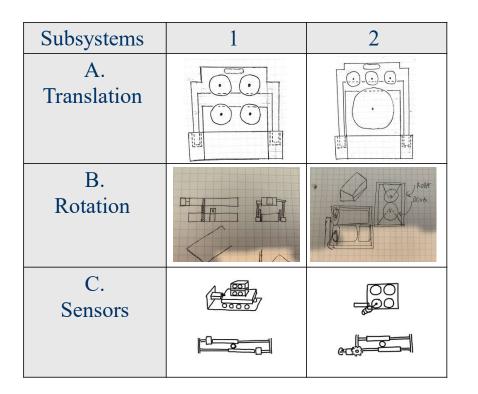
- Rotation
  - $l = d * \pi$

• 
$$I = \frac{1}{2} * M * r^2$$

• 
$$I = \frac{1}{2} * p * \pi * r^4 * L$$

- T = a \* I
- Sensors
  - P = VI = Fv

• 
$$v = r\omega$$


• 
$$F = \frac{VI}{V}$$

$$r\omega$$

• 
$$\tau = F \times r$$

• 
$$\tau = \frac{VI}{\omega}$$

## **Concept Selection**



- Translation: A1
- Rotation: B2
- Sensors: C1 (reworked)

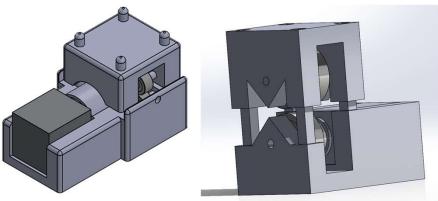



Figure 16. Translation (left) and rotation (right) CAD

|                                |            |          |          |          | TASK                                                 | ASSIGNED TO | PROGRESS | START   | END     |
|--------------------------------|------------|----------|----------|----------|------------------------------------------------------|-------------|----------|---------|---------|
|                                |            |          |          |          | Course Deliverables (Fall 2024)                      |             |          |         |         |
|                                | _          |          |          |          | Project Management                                   | All         | 100%     | 1/13/25 | 1/17/25 |
|                                | nedu       |          |          |          | Gantt chart/WBS                                      | Gray        | 100%     | 1/13/25 | 1/17/25 |
|                                |            |          |          |          | BOM                                                  | Josh H.     | 100%     | 1/13/25 | 1/17/25 |
|                                |            |          |          |          | Manufacturing                                        | Josh P.     | 100%     | 1/13/25 | 1/17/25 |
|                                |            |          |          |          | Engineering Calculations Summary                     | All         | 100%     | 1/20/25 | 1/24/25 |
|                                |            |          |          |          | Self-Learning/Individual Analysis                    | Individual  | 100%     | 1/20/25 | 2/16/25 |
|                                |            |          |          |          | Hardware Status Update - 33%                         | All         | 100%     | 1/13/25 | 2/5/25  |
| TASK AS                        | SSIGNED TO | PROGRESS | START    | END      | Wiring System                                        | Josh H.     | 100%     | 1/13/25 | 2/2/25  |
| <b>Course Deliverables (Fa</b> | all 2024)  |          |          |          | Sensors CAD design                                   | Gray        | 100%     | 1/13/25 | 1/24/25 |
| Presentation 1 Slides          | All        | 100%     | 9/9/24   | 9/13/24  | Website Check 1                                      | Josh P.     | 100%     | 2/14/25 | 2/21/25 |
| Presentation 1 Practice        | All        | 100%     | 9/13/24  | 9/15/24  | Hardware Status Update - 67%                         | All         | 100%     | 2/6/25  | 2/26/25 |
| Presentation 1 Revisions       |            | 100%     | 9/16/24  | 9/18/24  | Translation System (shafts, sleeves, and<br>housing) | Josh P.     | 100%     | 1/13/25 | 2/23/25 |
| Presentation 2 Slides          | All        | 100%     | 9/26/24  | 10/3/24  | Motor Mount and Load Cells System                    | Gray        | 100%     | 1/13/25 | 2/23/25 |
| Presentation 2 Practice        | All        | 100%     | 10/4/24  | 10/6/24  | UGRADS Registration                                  | Gray        | 100%     | 2/20/25 | 3/6/25  |
| Presentation 2 Revisions       |            | 100%     | 10/7/24  | 10/9/24  | Finalized Testing Plan                               | Gray        | 100%     | 2/24/25 | 3/21/25 |
|                                |            |          |          |          | Hardware Status Update - 100%                        | All         | 100%     | 2/27/25 | 3/26/25 |
| Report 1                       | All        | 100%     | 10/4/24  | 10/20/24 | Rotation System (shafts, sleeves, and housing)       | Josh P.     | 100%     | 1/13/25 | 3/23/25 |
| Website Development 1          | All        | 100%     | 10/17/24 | 10/24/24 | Frame System                                         | All         | 100%     | 2/27/25 | 3/23/25 |
| Analytical Analysis Memo       | o All      | 100%     | 10/18/24 | 11/1/24  | Arduino Code                                         | Josh H.     | 100%     | 1/13/25 | 3/23/25 |
| Presentation 3 Slides          | All        | 100%     | 10/24/24 | 10/31/24 | Electronics Box                                      | Gray        | 100%     | 2/27/25 | 3/23/25 |
| Presentation 3 Practice        | All        | 100%     | 11/1/24  | 11/3/24  | UGRADS Poster Draft                                  | All         | 100%     | 3/8/25  | 3/28/25 |
| Presentation 3 Revisions       | : All      | 100%     | 11/4/24  | 11/6/24  | Initial Testing Results                              | All         | 100%     | 3/21/25 | 4/9/25  |
| Prototype 1 Demo               | All        |          | 10/19/24 | 11/15/24 | UGRADS Final Poster and Presentation                 | All         | 100%     | 3/17/25 | 4/11/25 |
| Report 2                       | All        | 100%     | 11/12/24 | 11/26/24 | Final CAD Packet                                     | All         | 100%     | 3/17/25 | 4/13/25 |
| •                              |            |          |          |          | Product Demonstration                                | All         | 100%     | 4/2/25  | 4/16/25 |
| Final CAD                      | All        | 100%     | 11/18/24 | 12/2/24  | Final Testing Results                                | All         | 100%     | 4/9/25  | 4/16/25 |
| Final BOM                      | All        | 100%     | 11/18/24 | 12/2/24  | Final Report                                         | All         | 100%     | 4/4/25  | 4/18/25 |
| Prototype 2 Demo               | All        | 100%     | 11/10/24 | 12/1/24  | Website Check 2                                      | All         | 100%     | 4/12/25 | 4/19/25 |
| Project Management             | All        | 100%     | 11/25/24 | 12/5/24  | UGRAD Symposium                                      | All         | 50%      | 4/25/25 | 4/25/25 |
| , ,                            |            |          |          |          | Spec Sheet/Operation Manual                          | All         | 0%       | 4/16/25 | 4/30/25 |
| Website Development 2          | All        | 100%     | 11/29/24 | 12/6/24  | Client Handoff                                       | All         | 0%       | 4/28/25 | 5/2/25  |

|        |                                            | Income                                  |                                |
|--------|--------------------------------------------|-----------------------------------------|--------------------------------|
|        | From Sponsor<br>From Fundraising<br>Total: | \$500 Current:                          | \$5,000<br>\$350.00<br>\$5,350 |
|        |                                            | Expenses                                | \$0,000                        |
|        | Order Number                               | Description                             | Cost                           |
|        | Order 1                                    | Idle and driver rollers for translation | \$110.96                       |
|        | Order 2                                    | NEMA 17 stepper with gear ratio 5:1     | \$43.84                        |
|        | Order 3                                    | NEMA 11 stepper motor                   | \$26.31                        |
|        | Order 4                                    | driver roller 25mm                      | \$43.84                        |
|        | Order 5                                    | Stepper motor drivers                   | \$27.13                        |
|        | Order 6                                    | 30mm driver roller                      | \$74.89                        |
|        | Order 7                                    | Translation 3D print 1                  | \$39.40                        |
|        | Order 8                                    | Rotation 3D print 1                     | \$18.44                        |
|        | Order 9                                    | Nema 17 back 3D print 1                 | \$34.64                        |
|        | Order 10                                   | Nema 17 back 3D print 2                 | \$30.24                        |
|        | Order 11                                   | Nema 11 back 3D print 1                 | \$26.06                        |
| Budget | Order 12                                   | Translation 3D print 2                  | \$21.20                        |
| Baagot | Order 13                                   | Translation special 3D print 1          | \$116.58                       |
|        | Order 14                                   | Translation 3D print 3                  | \$55.28                        |
|        | Order 15                                   | Shafts, frames, load cells              | \$108.60                       |
|        | Order 16                                   | Screws and USB                          | \$26.08                        |
|        | Order 17                                   | Bearings and snap rings                 | \$21.12                        |
|        | Order 18                                   | Arduino and electronics                 | \$186.76                       |
|        | Order 19                                   | Screw terminals and H bridges           | \$18.54                        |
|        | Order 20                                   | Idler roller                            | \$25.30                        |
|        | Order 21                                   | Rotation 3D print 2                     | \$23.24                        |
|        | Order 22                                   | Translation special 3D print 2          | \$137.64                       |
|        | Order 23                                   | Sensor parts final                      | \$30.79                        |
|        | Order 24                                   | Electrical box print 1                  | \$50.96                        |
|        | Order 25                                   | Electrical box print 2                  | \$92.00                        |
|        | Order 26                                   | Rotation motor angling                  | \$342.02                       |
|        | Total Expenses:                            |                                         | \$1,731.86                     |
|        | Budget Left:                               |                                         | \$3,618                        |
|        | Percent used:                              |                                         | 32.37%                         |

# **Design Validation**

| Part # and Functions | Potential Failure<br>Mode | Potential Effect(s) of<br>Failure | Potential Causes and Mechanisms of<br>Failure | RPN | Recommended Action                  |
|----------------------|---------------------------|-----------------------------------|-----------------------------------------------|-----|-------------------------------------|
| Motor                | water ingress             | stop operation, electrical hazard | environmental conditions                      | 40  | shield component                    |
| Motor                | high-cycle fatigue        | stop operation                    | material/component issues, fatigue            | 42  | replace component every 5 years     |
| Roller               | fretting wear             | misalignment                      | material/component issues, tolerances         | 24  | replace component every 5 years     |
| Roller               | surface fatigue wear      | slipping                          | material/component issues, fatigue            | 24  | replace component every 5 years     |
| Shaft                | high-cycle fatigue        | fracture                          | material/component issues, cracking           | 42  | replace component every 5 years     |
| Sensor               | water ingress             | emergency stop disabled           | environmental conditions                      | 40  | shield component                    |
| Remote Control       | connection loss           | stop operation                    | environmental conditions                      | 140 | ensure stable connection conditions |
| Torque Plate         | fretting wear             | misalignment                      | material/component issues, tolerances         | 24  | replace component every 5 years     |
| Torque Plate         | surface fatigue wear      | slipping                          | material/component issues, fatigue            | 24  | replace component every 5 years     |
| Lead Screw           | fretting wear             | misalignment                      | material/component issues, tolerances         | 24  | replace component every 5 years     |
| Lead Screw           | high-cycle fatigue        | fracture                          | material/component issues, cracking           | 42  | replace component every 5 years     |

# Prototyping

- Prototype 1
  - Initial translation system test

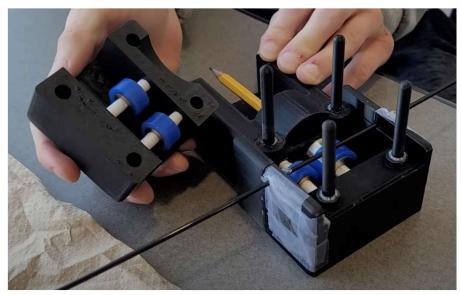



Figure 17. First translation prototype

- Prototype 2
  - Arduino stepper motors test



Figure 18. Wired stepper motor driver

### **Final Hardware**

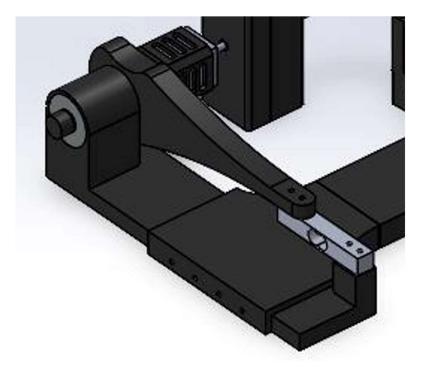



Figure 19. Final CAD

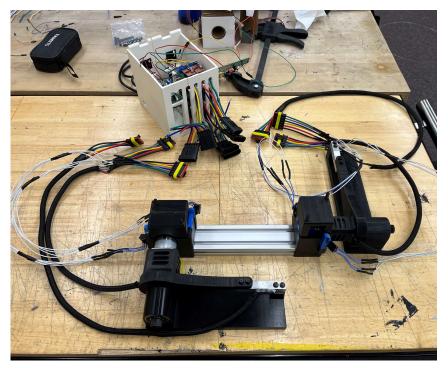



Figure 20. 100% hardware assembly

# **Testing Plan**

| Experiment                    | Relevant DRs       | Testing Equipment                                       | Other Resources                            |
|-------------------------------|--------------------|---------------------------------------------------------|--------------------------------------------|
| EXP1 - Motion Test            | CR1, ER1, ER2      | Arduino code<br>Measuring tape<br>Protractor            | Catheter                                   |
| EXP 2 - Remote Control Test   | CR2, CR4, ER3      | Arduino code<br>Computer<br>Measuring tape<br>Stopwatch | Catheter                                   |
| EXP 3 - Calibration Test      | CR9, ER8           | Arduino code<br>Computer<br>Weights                     | Load cells (partially removed from system) |
| EXP 4 - Data Collection Test  | CR3, ER4, ER6, ER7 | Arduino code<br>Computer                                | Catheter                                   |
| EXP 5 - Level/Bending Test    | CR5                | Level<br>Protractor                                     | Catheter                                   |
| EXP 6 - Assembly Test         | CR6, CR8, ER9      | Measuring tape<br>Stopwatch                             | Lab space                                  |
| EXP 7 - Water Resistance Test | CR7                | Voltmeter                                               | Water                                      |
| EXP 8 - Lead Screws Test      | ER5                | Arduino code<br>Calipers                                | Multiple catheters                         |
| EXP 9 - Heat Test             | ER10               | Arduino code<br>Temperature gun                         | Room-temperature<br>environment            |

### **Specification Sheet: CRs**

| Customer Requirement  | CR met? (√ or X) | Client Acceptable ( $\checkmark$ or X) |
|-----------------------|------------------|----------------------------------------|
| CR1 – Catheter motion | $\checkmark$     | $\checkmark$                           |
| CR2 – Remote control  | $\checkmark$     | $\checkmark$                           |
| CR3 – Instant data    | $\checkmark$     | $\checkmark$                           |
| CR4 – Emergency stop  | $\checkmark$     | $\checkmark$                           |
| CR5 – Prevent kinking | $\checkmark$     | $\checkmark$                           |
| CR6 – Replaceable     | $\checkmark$     | $\checkmark$                           |
| CR7 – Prevent damage  | $\checkmark$     | $\checkmark$                           |
| CR8 – Assembly        | $\checkmark$     | $\checkmark$                           |
| CR9 – Calibrations    | $\checkmark$     | $\checkmark$                           |

## **Specification Sheet: ERs**

| Engineering         | Target           | Tolerance           | Measured/Calculated | ER met?      | Client Acceptable |
|---------------------|------------------|---------------------|---------------------|--------------|-------------------|
| Requirements        |                  |                     | Value               | (√ or X)     | (√ or X)          |
| ER1 - Translation   | 2ft              | ±4in                | 2ft                 | $\checkmark$ | $\checkmark$      |
| ER2 - Rotation      | 360°             | ±10°                | 360°                | $\checkmark$ | $\checkmark$      |
| ER3 - Remote        | 10ft             | ±4in                | 20ft                | $\checkmark$ | $\checkmark$      |
| ER4 - Frequency     | 5-30Hz           | ±1Hz                | 30Hz                | $\checkmark$ | $\checkmark$      |
| ER5 - Catheter size | 2-15F            | ±1F                 | 0-24F               | $\checkmark$ | $\checkmark$      |
| ER6 - Forces        | 0.1-10N          | ±0.01N              | 0.1-10N             | $\checkmark$ | $\checkmark$      |
| ER7 - Displacement  | 0.1mm            | ±0.01mm             | 0.1mm               | $\checkmark$ | $\checkmark$      |
| ER8 - Tolerance     | 0.05N            | ±0.01N              | 0.05N               | $\checkmark$ | $\checkmark$      |
| ER9 - Size          | 1ft <sup>3</sup> | ±0.1ft <sup>3</sup> | 1.2ft <sup>3</sup>  | Х            | $\checkmark$      |
| ER10 - Temperature  | 60°C             | ±5°C                | 38°C                | $\checkmark$ | $\checkmark$      |

### Discussion

### Success Metrics

- Catheter moves and rotates
- Control process comparable to hand-guided catheter

### • Future Work

- Standardized medical device testing
- Move from benchtop models to clinical settings
- Remote operation on patients

### References

[1] "Bioengineering Devices Lab (BDL)." nau.edu/mechanical-engineering. https://nau.edu/mechanical-engineering/bioengineering-devices-laboratory/ (accessed Apr. 17, 2025).

[2] Copyright © 2005 Kevin Otto, www.robuststrategy.com,

kevin\_n\_otto@yahoo.com,http://www.kevinotto.com/RSS/templates/QFD Template.xls, Modified from a template from Design4X Inc.

[3] G. Fagogenis et al., "Autonomous robotic intracardiac catheter navigation using Haptic Vision," Science robotics, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693882/ (accessed Sep. 16, 2024).

[4] M. Equipment, "Catheter and medical device testing equipment with water tank," MSI, https://msi.equipment/product/idte\_3000/ (accessed Sep. 12, 2024).

[5] "Liberty." tiko. https://tiko.co.il/liberty/ (accessed Apr. 17, 2025).

[6] LabVIEW Fundamentals. National Instruments Corporation (accessed Sept. 13, 2024).

[7] E. OBERG, El al, "TOOLING AND TOOLMAKING," in Machinery's Handbook, 29th ed, INDUSTRIAL PRESS, INC., 2012, pp. 754–1003

[8] J. F. Carneiro and F. G. de Almeida, "Friction characteristics and servo control of a linear peristaltic actuator," The International Journal of Advanced Manufacturing Technology, vol. 96, no. 5–8, pp. 2117–2126, Feb. 2018. doi:10.1007/s00170-018-1678-6

[9] P. Larsson, "Prevention of Servo-Induced Vibrations in Robotics," thesis, 2011

[10] A. Haidar, C. Benachaiba, and M. Zahir, "Software interfacing of servo motor with microcontroller," Journal of Electrical Systems, vol. 9, pp. 84–99. [Online]. Available: https://ro.uow.edu.au/eispapers/468/

[11] Cardiovascular implants — Endovascular devices, ISO 25539-1, 2017

[12] "Catheter testing and delivery system testing," ViVitro Labs, https://vivitrolabs.com/services/catheters-and-delivery-systems/.

[13] J. Lyon, "The six factors you need to consider when picking a force sensor," Interlink Electronics,

https://www.interlinkelectronics.com/blog/the-factors-you-need-to-consider-when-choosing-a-force-sensing-solution (accessed Sep. 12, 2024).

### References

[14] Standard Test Method for Rubber Property—Durometer Hardness, ASTM D2240, 2015

[15] Engine Oil Viscosity Classification, SAE J300, 2015

[16] H. A. Toliyat and G. B. Kliman, Handbook of Electric Motors, 2nd ed. New York: Marcel Dekker, 2004, ch 2.

[17] NEMA ICS 16-2001.

[18] "Nema stepper motors - NEMA steppers: Electromate inc," Electromate Inc., https://www.electromate.com/mechatronicautomation/mechatronic-automation-components/stepper-motors/nema-stepper-motors/ (accessed Sep. 14, 2024).

[19] V. Vladinovskis, "Selection of microcontroller board and stepper motor driver for FDM 3D printing to reduce power consumption," 2023 IEEE 64th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2023, pp. 1-6, doi: 10.1109/RTUCON60080.2023.10413037.

[20] H. A. Toliyat and G. B. Kliman, Handbook of Electric Motors, 2nd ed. New York: Marcel Dekker, 2004, ch 3.

[21] "Tech tip: How to choose and use Stepper Motor Power supplies from AutomationDirect," AutomationDirect, https://www.automationdirect.com/videos/video?videoToPlay=ITtYkofw-Jg#:~:text=We%20recommend%20two%20different%20ways,phase%20current%20of%206.3%20amps. (accessed Sep. 14, 2024).

[22] "Selecting the best power supply for your stepper or Servo Motor Application," Teknic, Inc., https://teknic.com/selecting-powersupply/ (accessed Sep. 14, 2024).

[23] H. Zhu, M. Zhou and S. Zhu, "A Design of the Automatic Anti-Collision System," 2009 International Workshop on Intelligent Systems and Applications, Wuhan, China, 2009, pp. 1-4, doi: 10.1109/IWISA.2009.5072613.

[24] "Arduino tutorial: Serial inputs," Norwegian Creations, https://www.norwegiancreations.com/2017/12/arduino-tutorial-serial-inputs/ (accessed Oct. 4, 2024).

[25] Ed, "Arduino interrupts tutorial - the robotics back," End, https://roboticsbackend.com/arduino-interrupts/ (accessed Oct. 4, 2024).

[26] R. S. Figliola and D. E. Beasley, Theory and Design for Mechanical Instruments, 7th Edition. Hoboken, NJ: Wiley, 2019. [Online]. Available: https://www.wiley.com/en-us/Theory+and+Design+for+Mechanical+Measurements%2C+7th+Edition-p-9781119475651. Accessed: Sep. 13, 2024.

### References

[27] R. G. Budynas and J. K. Nisbett, "Finite-Element Analysis," in Shigley's Mechanical Engineering Design, 11th Edition. New York, NY: McGraw-Hill Education, 2020, ch. 19, pp. 955-974. [Online] Available:

https://www.mheducation.com/highered/product/shigley-s-mechanical-engineering-design-budynas-nisbett/M9780073398211.html. Accessed: Sep. 13, 2024.

[28] M. Khoshnam, A. C. Skanes, and R. V. Patel, "Modeling and estimation of tip contact force for steerable ablation catheters," IEEE Trans Biomed Eng., 2015. doi: 10.1109/TBME.2015.2389615.

[29] N. K. Sankaran, P. Chembrammel, and T. Kesavadas, "Force calibration for an endovascular robotic system with proximal force measurement," International Journal of Medical Robotics and Computer Assisted Surgery, vol. 16, no. 2, Apr. 2020, https://doi.org/10.1002/rcs.2045.

[30] A. Hooshiar, A. Sayadi, M. Jolaei, and J. Dargahi, "Accurate Estimation of Tip Force on Tendon-driven Catheters using Inverse Cosserat Rod Model," 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 2020, pp. 37-40, doi: 10.1109/BIA50171.2020.9244512.

[31] Intravascular Catheters – Sterile and single-use catheters, ISO 10555-1, 2023.

[32] "Horizontal Testing of Catheter Systems." ZwickRoell. https://www.zwickroell.com/industries/medicalpharmaceutical/cathetersand-stents/horizontal-testing-of-catheter-systems/ (accessed Sep. 13, 2024).

[33] Nanoflex. https://nanoflexrobotics.com (accessed Sep. 13, 2024).

[34] L. W. McKeen, Fatigue and Tribological Properties of Plastics and Elastomers, 3rd ed., 2016. [Online]. Available: https://www.sciencedirect.com/book/9780323442015/fatigue-and-tribological-properties-of-plastics-and-elastomers#book-info. Accessed: Oct. 6, 2024.

[35] National Instruments. "LabVIEW Programming Reference Manual." https://www.ni.com/docs/en-US/bundle/labview-api-ref/page/intro.html (accessed Nov. 27, 2024).

[36] R. C. Hibbeler, "Chapter 13," in Mechanics and Materials, 10th ed, Pearson Education, Inc., pp. 686–689

[37] Graphs made in Desmos

[38] S. A. Lynn, S. B. Moore, A. C. Griffin, B. D. Hayes, and D. E. Tanner, "Evaluating the performance of a configurable finite element model as a tool in composite catheter design," 30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021), Athens, Greece, Jun. 2021, https://doi.org/10.1016/j.promfg.2020.10.138.

# Thank you



### Purchased Parts

| Part                                     | Details                                                                                                                 | Status    | Link             | Supplier      | Price per Unit | Quantity | Total Price | Picture        |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|------------------|---------------|----------------|----------|-------------|----------------|
| Translation Idler Roller                 | 3/4in roller                                                                                                            | Delivered | https://www.mcm  | Mc-MasterCarr | \$20.73        | 3        | \$62.19     | 0              |
| Translation Driver Roller                | 25mm roller                                                                                                             | Delivered | https://www.mcm  | Mc-MasterCarr | \$31.81        | 1        | \$31.81     | 0              |
| Rotation Driver Roller                   | 30mm roller                                                                                                             | Delivered | https://www.mcm  | Mc-MasterCarr | \$31.93        | 1        | \$31.93     | 0              |
| Translation Stepper Motor                | NEMA 17 with 5:1 gear ratio                                                                                             | Delivered | https://www.ama  | Amazon        | \$40.15        | 1        | \$40.15     | ø              |
| Rotation Stepper Motor                   | NEMA 11                                                                                                                 | Delivered | https://www.ama  | Amazon        | \$24.10        | 1        | \$24.10     | 1              |
| Motor Driver                             | DVR8483 stepper motor driver                                                                                            | Delivered | https://www.polo | Pololu        | \$9.95         | 4        | \$39.80     | -              |
| Arduino Mega                             | Arduino Mega 2560 REV3                                                                                                  | Delivered | https://www.ama  | Amazon        | \$52.34        | 1        | \$52.34     | 10             |
| Arduino Mega terminal<br>block sheild    | screw terminal block breakout module for Arduino Mega                                                                   | Delivered | https://www.ama  | Amazon        | \$32.37        | 1        | \$32.37     | -              |
| Arduino basic starter kit                | Arduino basic starter kit LEDs, resistors, buttons, capacitors,<br>transistors, diodes, wires, breadboard, power supply | Delivered | https://www.ama  | Amazon        | \$10.81        | 1        | \$10.81     | 1              |
| 5V mini fan                              | 4pcs 30mm 5V fans                                                                                                       | Delivered | https://www.ama  | Amazon        | \$10.81        | 1        | \$10.81     | **             |
| DC 12V relay module                      | 4pcs DC 12V relay module                                                                                                | Delivered | https://www.ama  | Amazon        | \$7.57         | 1        | \$7.57      |                |
| PCB board kit                            | 82 pcs PCB board kit with connectors                                                                                    | Delivered | https://www.ama  | Amazon        | \$12.98        | 1        | \$12.98     | A STATE        |
| 22 gauge wire                            | 33ft/10m wire                                                                                                           | Delivered | https://www.ama  | Amazon        | \$14.06        | 1        | \$14.06     | 01             |
| Micro lead screw                         | 4mm 5V 2-phase 4-wire stepper motor micro lead screw                                                                    | Delivered | https://www.ama  | Amazon        | \$5.92         | 4        | \$23.68     | Na             |
| Load cell kit                            | 4 sets 1kg load cells and HX711 boards                                                                                  | Delivered | https://www.ama  | Amazon        | \$15.49        | 1        | \$15.49     | Rolla<br>Rolla |
| Roller Shafts                            | 4.5in x 1/4in stainless steel shaft                                                                                     | Delivered | https://www.mcm  | Mc-MasterCarr | \$6.86         | 2        | \$13.72     | _              |
| T-slotted frame                          | 1ft T-slotted framing rail                                                                                              | Delivered | https://www.mcm  | Mc-MasterCarr | \$7.57         | 1        | \$7.57      |                |
| Idler Roller                             | 1 1/2in roller                                                                                                          | Delivered | https://www.mcm  | Mc-MasterCarr | \$55.77        | 1        | \$55.77     | 0              |
| Load cell bearings                       | 4pcs 15x35x11mm deep groove ball bearings                                                                               | Delivered | https://www.ama  | Amazon        | \$8.33         | 1        | \$8.33      | O              |
| Snap rings                               | 145pcs external retaining rings 15-28mm                                                                                 | Delivered | https://www.ama  | Amazon        | \$12.79        | 1        | \$12.79     | ESE            |
| H bridges                                | 4pcs mini L298N 2 channel H bridge DC motor driver board with<br>MX1508 chip                                            | Delivered | https://www.ama  | Amazon        | \$7.99         | 1        | \$7.99      |                |
| USB cable                                | USB cable type A male to B male, 20ft                                                                                   | Delivered | https://www.ama  | Amazon        | \$13.99        | 1        | \$13.99     | 14             |
| M4 screw kit                             | 300pcs M4 hex socket head cap screw assortment with nuts and<br>washers, 6, 8, 10, 12, 16, 20, 25, 30mm (black)         | Delivered | https://www.ama  | Amazon        | \$8.99         | 1        | \$8.99      | -              |
| PCB terminal block<br>connectors         | 70pcs 2 pin & 3 pin 5mm/0.2inch pitch PCB mount screw terminal<br>block connector                                       | Delivered | https://www.ama  | Amazon        | \$8.99         | 1        | \$8.99      |                |
| Precision Single U-Joint                 | Pin and Block Joint, for 1/4" Diameter x 5/8" Deep Shaft, Acetal                                                        | Delivered | https://www.mcm  | Mc-MasterCarr | \$40.07        | 4        | \$160.28    | -              |
| Stainless Steel Ball Bearing             | Shielded, Trade Number R168-2Z                                                                                          | Delivered | https://www.mcm  | Mc-MasterCarr | \$5.72         | 8        | \$45.76     | Ô              |
| Rotary Shaft                             | 303 Stainless Steel, 1/4" Diameter, 9" Long                                                                             | Delivered | https://www.mcm  | Mc-MasterCarr | \$10.73        | 2        | \$21.46     | //             |
| Press-Fit Low-Profile Drive<br>Roller    | 1-1/4" Roller Diameter, 3/4" Roller Width                                                                               | Delivered | https://www.mcm  | Mc-MasterCarr | \$28.96        | 1        | \$28.96     | 0              |
| Metal Gear - 20 Degree<br>Pressure Angle | Round Bore with Set Screw, 48 Pitch, 48 Teeth                                                                           | Delivered | https://www.mcm  | Mc-MasterCarr | \$28.52        | 3        | \$85.56     | 3              |

### **Manufactured Parts**

| Part                                        | Details                                   | Status   | Manufacturer | Lead Time<br>(hours) | Material           | Components | Manufacturing<br>Location     | Price per<br>Unit | Quantity | Total<br>Price |
|---------------------------------------------|-------------------------------------------|----------|--------------|----------------------|--------------------|------------|-------------------------------|-------------------|----------|----------------|
| Prototype Translation Housing               | Translation Housing                       | Complete | Josh P.      | 15                   | 3D-printed<br>PLA  | 1          | Cline Library                 | \$39.40           | 1        | \$39.40        |
| Prototype Rotation Housing                  | Rotation Housing                          | Complete | Josh H.      | 10                   | 3D-printed<br>PLA  | 1          | Cline Library                 | \$18.44           | 1        | \$18.44        |
| Shafts (metal)                              | Metal shafts for bearings                 | Complete | Josh P.      | 1                    | Stainless<br>Steel | 6          | Engineering Machine<br>Shop   | \$0.00            | 6        | \$0.00         |
| Prototype mount for back of<br>NEMA17       | load cell housing                         | Complete | Josh P.      | 12                   | 3D-printed<br>PLA  | 4          | Cline Library                 | \$34.64           | 1        | \$34.64        |
| Mount for back of NEMA17                    | load cell housing                         | Complete | Josh P.      | 28                   | 3D-printed<br>PLA  | 4          | Cline Library                 | \$30.24           | 1        | \$30.24        |
| Mount for back of NEMA11                    | load cell housing                         | Complete | Josh P.      | 28                   | 3D-printed<br>PLA  | 4          | Cline Library                 | \$26.06           | 1        | \$26.06        |
| Electronic Wiring                           | Circuit board wiring                      | Complete | All          | 20                   | Wires,<br>solder   | 5          | Cline Library                 | \$0.00            | 1        | \$0.00         |
| Prototype 2 Translation Housing             | Translation Housing                       | Complete | Josh P.      | 10                   | 3D-printed<br>PLA  | 18         | Cline Library                 | \$21.20           | 1        | \$21.20        |
| Translation Prototype Special<br>Components | Small components or<br>different material | Complete | Josh P.      | 1                    | Vero and<br>Agilus | 14         | Bioengineering<br>Devices Lab | \$116.58          | 1        | \$116.58       |
| Translation Final Housing                   | Translation Final Housing                 | Complete | Josh P.      | 22                   | 3D-printed<br>PLA  | 15         | Cline Library                 | \$55.28           | 1        | \$55.28        |
| Rotation Final Housing                      | Rotation Final Housing                    | Complete | Josh P.      | 10                   | 3D-printed<br>PLA  | 12         | Cline Library                 | \$52.48           | 1        | \$52.48        |
| Translation Final Special<br>Components     | Small components or<br>different material | Complete | Josh P.      | 1                    | Vero and<br>Agilus | 10         | Bioengineering<br>Devices Lab | \$137.64          | 1        | \$137.64       |
| Sensor Parts Final                          | load cell housing                         | Complete | Josh P.      | 19.5                 | 3D-printed<br>PLA  | 8          | Cline Library                 | \$60.04           | 1        | \$60.04        |
| Electronic Box Prototype                    | electronics housing                       | Complete | Josh P.      | 28                   | 3D-printed<br>PLA  | 4          | Cline Library                 | \$50.96           | 1        | \$50.96        |
| Electronic Box Final                        | electronics housing                       | Complete | Gray         | 37                   | 3D-printed<br>PLA  | 4          | Cline Library                 | \$82.76           | 1        | \$82.76        |
| Box Lid Reprint                             | electronics lid                           | Complete | Gray         | 4                    | 3D-printed<br>PLA  | 2          | Cline Library                 | \$9.24            | 1        | \$9.24         |