Solar Thermal Collector Design of Experiments for the NAU Renewable Energy Laboratory

Northern Arizona University Engineering Fest Andrés Aguilera Mendez, DaJae Doral, Michael Nelson December 9, 2022

Team

Andrés Aguilera Mendez Financial Manger CAD Engineer

DaJae Doral Project Manager Manufacturing Engineer

Michael Nelson Logistics Manager Test Engineer

Background: Renewable Energy

- 173,000 terawatts of solar energy strikes the Earth continuously. More than 10000 times the worlds energy usage
- Replenishable sources of energy
- NAU Renewable Energy lab
 - Wind
 - Solar
- Solar thermal

Figure 1: Types of Renewable Energies

3

Andrés

Background: Solar Thermal

Figure 2: Collector Schematic

Figure 3: Evacuated Tube Schematic

Michael

Project Description

- Design an experiment to calculate the efficiency of the collector
- Build testbed for the experiment
- Compare expected and measured results
- Create a lab manual for the experiment
- Expose students to solar thermal concepts
 - Convective Heat Transfer
 - Efficiency Calculations
 - Economic Implication

Figure 4: Renewable Energy Lab Space

Design Requirements

Customer Requirements

- Design and create an experimental test bed housing an evacuated tube solar collector
- Write lab procedure for a new ME 451 lab
- Design an experiment to compare Reported v. Experimental Data from evacuated tube system
- Utilize Existing Evacuated Solar Thermal Collector
- Run the system as described in the lab procedure to have master set of data

Engineering Requirements

- System Failure Prevention
 - Freeze Protection (x2 Methods)
 - Steam Protection (x2 Methods)
 - No system leaks or fluid discharge
- Cost
 - Solar Thermal Capstone Budget target of \$3083.55
- System Longevity
 - Contain system in covering, protected against weather and wildlife
 - Lifespan Target of 10 years
- Data Collection
 - Temp In, Temp Out, Flow Rate, Insolation

6

- Simplicity of Operation
 - Safe, general operation by 1 person.

Decision Making

- Types of Systems
 - Passive
 - Internal Storage
 - Thermosyphon
 - Active
 - Open Loop
 - Direct
 - Drain Down
 - Closed Loop
 - Drain Back
 - Antifreeze
- Consider...
 - Low Maintenance
 - Student Engagement
 - Seasonal Protection
 - Appropriate use of materials

Figure 5: a) Direct Solar Thermal System b) Indirect Solar Thermal System

Michael

Preliminary Designs

Freeze Plug System

Drain-Back System

Figure 6: Freeze Plug System Sketch

- Advantages
 - Inexpensive
 - Simple
- Disadvantages
 - Not adjustable
 - Less durable

- Highlights
 - Freeze Plug
 - Pressure Release Valve
 - All plastic plumbing

- Advantages
 - Adjustable
 - Durable
- Disadvantages
 - Costly

•More complicated

- Highlights
 - Shade Cover
 - Drain-back System
 - Combination Plumbing

Figure 8: Semester 1 Design Layout

Design Iteration Semester 1

- \circ Implementation
 - $\circ~$ Drain back System
 - $\circ~2$ methods of Freeze Protection
- $_{\circ}~$ Fluid is stored in a reservoir
- \circ Pumped Through the Collector
- Manifold Heat Transfer Occurs
- \circ Fluid Returns to Reservoir
- Temperature is tracked for analysis
- Need to measure Insolation (I), and Flow Rate (Q)

Design Iteration Semester 2

Figure 9: System Diagram

Figure 10: CAD Assembly

10 Andrés

Manufacturing

Figure 11: Testbed Rack

- Stage 1
- Rack Redesign and Assembly
- Aided by Prof. Carson Pete

Figure 12: Primary Components

- Stage 2
- Primary Component Layout and Installation

Figure 13: Full System

- Stage 3
- Final System Set-up and Testing
- Plumbing and Electrical

DaJae

Table 1: Top Level Testing Summary

Top Level Testing Summary

- Leak Down and Pressure Test
 - Verifies System Operation
- Data Collection Check
 - Necessary Parameters are Measured and Accurate
- Efficiency Analysis and Comparison
 - Analysis can be performed, and Results can be validated

Test Number	Test Name	Relevant DR
T1	Flow Meter Calibration	CR3 ER4
T2	Thermocouple Calibration	CR3 ER4
Т3	Leak Test	ER1
T4	Lab Run	CR1 CR2 CR5 ER4
Т5	Verify Budget Constraints	CR4 ER2
T6	Confirm Primary Component Protection	ER3

Demonstration

Measured Efficiency Equation $\eta = 0.0085x^2-0.738x + 15.929$

Manufacturer Efficiency Equation $\eta = 0.01611x^2 - 0.622x + 0.398$

Figure 14: Experimental Efficiency Curve

Results

- Test Data vs SRCC Data
- Sub optimal Test Conditions
 - Winter
 - Small Direct Sunlight Window

Specification Sheet

Table 2: Customer Requirements

Customer Requirement	CR met?	Client Acceptable
CR1 – Test Bed	\checkmark	\checkmark
CR2 – New Lab	\checkmark	\checkmark
CR3 – Efficiency Comparison	\checkmark	\checkmark
CR4 – Utilize Pre-owned Solar Thermal Collectors	\checkmark	\checkmark
CR5 – Base Data set	\checkmark	\checkmark

Table 3: Engineering Requirements

Engineering Requirement	Target	Tolerance	Measured/Calcu lated/Observed	Met	Customer Acceptable
ER1 - System Failure Prevention	2 Freeze, and Pressure protection methods	-26.1°F (50yr low) 40psi+/-10psi (half of maximum expected pressure	-30 °F 25psi	\checkmark	\checkmark
ER2 - Cost	\$3083	+800*	\$3109	\checkmark	\checkmark
ER3 - Lifespan	10years	+/-2years	25	\checkmark	\checkmark
ER4 - Data Collection	Uncertainty <10%	+/-5%	12%	\checkmark	\checkmark
ER5- Simplicity of Operation	1 Person Operable	+3 people	1	\checkmark	\checkmark

15 Andrés

Budget

Total Budget -\$ 3200 Cost Before Taxes and Shipping – \$ 2717.63 Cost After Taxes and Shipping -\$ 3109.30

Table 4: Budget Summary					
Category	Cost				
Data	\$	148.78			
Electrical	\$	552.13			
Fluid	\$	1,454.74			
Rack	\$	480.85			
Supplies	\$	81.13			
Total	\$	2,717.63			

Future Work

- Lab Variety Expansion
 - Collector Comparison
 - Angular Adjustment
- Analysis of Additional Collector Types
- System Performance Improvement
 Reduce Thermal Losses
- Usage of Collected Energy
 - Expand to use heated water for other projects
- Adjustability Refinement
 - Improve Lifting and Support Mechanism
- Collect More Sets of Data
 - Spring, Summer, Fall

References

- [1] "Final Report." NAU Solar Thermal Capstone, https://www.ceias.nau.edu/capstone/projects/ME/2020/20Spr6_NAUSolar/.
- [2] ICC 901/SRCC 100 Solar Thermal Collector Standard. International Code Council, 2020.
- [3] ICC 900/SRCC 300 Solar Thermal System Standard. International Code Council, 2020.
- · [4] Willy, David. "Flat Plate Solar Thermal." Fall 2021
- [5] Product Data Sheet SunMaxx Solar. https://www.sunmaxxsolar.com/wp-content/uploads/2020/08/v2020-DataSheet-ThermoPower-VHP-SeriesSolarCollectors.pdf.
- [6] D. Y. Goswami, Principles of Solar Engineering. Boca Raton, FL: CRC Press, 2015.
- [7] J. O. H. N. A. DUFFIE, Solar Engineering of Thermal Processes. JOHN WILEY, 2020.
- [8] R. S. Figliola and D. E. Beasley, Theory and design for mechanical measurements. Hoboken: John Wiley & Sons, Inc., 2021
- [9] "Fundamentals of Solar Photovoltaic Systems," YouTube, 26-Mar-2021. [Online]. Available: https://www.youtube.com/watch?v=px239v5o6xU. [Accessed: 06-Mar-2022].
- [10] "U.S. Energy Information Administration EIA independent statistics and analysis," Solar thermal collectors U.S. Energy Information Administration (EIA). [Online]. Available: https://www.eia.gov/energyexplained/solar/solar-thermal-collectors.php. [Accessed: 05-Mar-2022].
- [11] Ma, Liangdong, et al. "Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector with U-Tube." Building and Environment, vol. 45, no. 9, 2010, pp. 1959–1967., https://doi.org/10.1016/j.buildenv.2010.01.015.
- [12] Sahu, Netrananda. "Exploring Renewable Energy Resources Using Remote Sensing and GIS-A Review." MDPI, Multidisciplinary Digital Publishing Institute, 19 Aug. 2019, https://www.mdpi.com/2079-9276/8/3/149.
- [13] "Upload Image to Sharpen & Upscale It." Cutout.pro, https://www.cutout.pro/photo-enhancer-sharpener-upscaler/upload.

Pump Station

List of components

1) Pressure relief valve

2) Pressure gauge (145 psi / 10 bar)

- 3) Ball valve with temperature gauge in the return (320°F / 160°C)
- 4) Solar pump UNIMAXX-PLUS-SC-S30-R

5) Flowmeter

- 6) Drain Valves
- 7) Ball valve with temperature gauge in the supply (320°F / 160°C) List of connections

a) UniMaxx Quick Connect fittings: UNIMAXX-PLUS-SC-500-ADPT-3/4IN-CF (or 1IN-CF

b) Expansion tank fittings 3/4in GxNPT - XMAXX-HW-3/4IN-3/4IN-G-NPT

Mishaps

Staining

Efficiency Calculation

$$\eta = \frac{q_{conv}^{\prime\prime}}{q_{rad}^{\prime\prime}} = \frac{\dot{m} \cdot C_p \cdot \Delta T}{A_c \cdot I_c}$$

- $\dot{m} = \text{mass flow rate}$
- C_p = specific heat capacity
- ΔT = temperature difference cross collector inlet and outlet
- $A_c = \text{gross}$ area of collector
- $I_{C} =$ solar irradiance

Electrical Conduit

