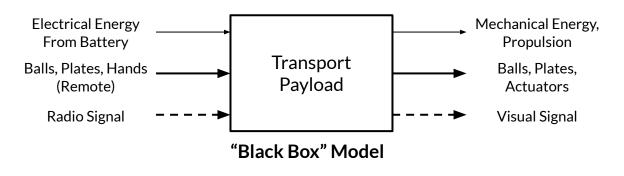
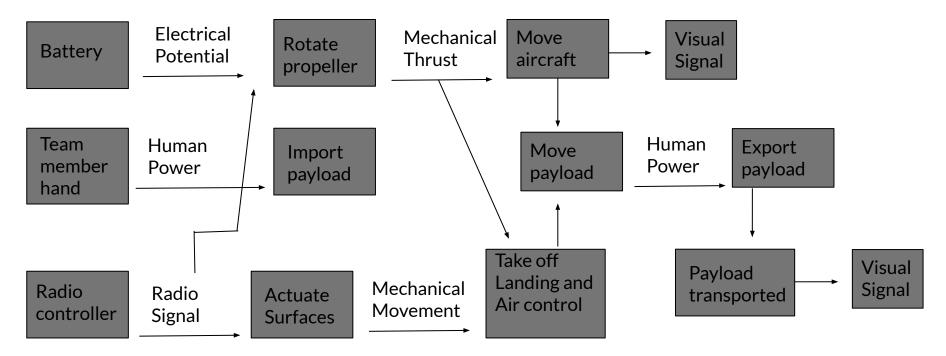
SAE Aero Regular: Presentation 2 Concept Generation and Evaluation

Jacob Cong, Chris Galus, Alex Klausenstock, Nathan Valenzuela


Project Description

Main requirements for regular class:

- Able to carry oversized cargo (soccer balls and steel weights)
- Take off / land on 100 foot runway
- Travel 400 feet from start before turn
- Aircraft must complete a minimum of one 360° circuit
- 120 second time limit
- 10 foot max wingspan
- 1000 Watt power limiter


Figure 1: SAE logo

Nathan Valenzuela

Functional Model

Chris Galus

Concept Generation: Airfoil

Need short take off/high lift capabilities. Short list of best short take off and landing (STOL) aircraft and the airfoil they used. Continuing to look at gliding ratio and high available angle of attack before stall utilizing all airfoils on aifoiltool.com.

- USA 35B
 - Used on multiple STOL bush planes
- NACA 2412
 - Used on Cessna bush planes
- Eppler 61
 - Best performance to this point

	Take off distance	Airfoil	Wingspan (ft)	Wing Area (ft)	Payload (lb)
Bounsall Super Prospector	300	proprietary	29.66	120.8	360
Conroy Stolifter	450	proprietary			
Dornier Do 27	558	NACA 23018	39.33	209	585
Fieseler Fi 156 Storch	350	proprietary			
Javelin V6 STOL	150	USA 35B	32	168	1000
Maule M-5	550	USA 35B	30.8333	157.9	900
Scottish Aviation Pioneer	555	proprietary	49.75	390	1965
Slepcev Storch	126	proprietary			
Zenith STOL CH 801	400	proprietary	27	167	1050
piper j3 cub	1. 1.	USA35B	35.25	178.5	455
cessna 180/185	-	NACA 2412	35.8333	174	1100

Concept Evaluation: Airfoil

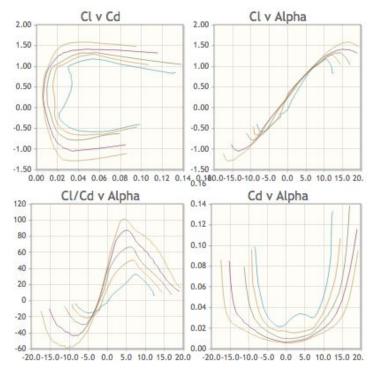


Figure 1: NACA 2412 Aerodynamic Graphs [H]

Using the graphs output from airfoiltools.com the team is comparing gliding ratio, angle of stall, how gliding ratio is affected by alpha

USA 35B best Cl/Cd vs alpha

NACA 2412 best Cl vs Cd

E 61 best Cl vs alpha

Concept Generation: Wings

Constant chord Tapered (Trapezoidal) Reverse tapered Compound tapered

Elliptical

Choosing a straight (constant chord) wing gives:

- Internally supported by whole span spars
- Easiest to manufacture
- Greatest wing area for given span Choosing a hoerner wing tip gives:
- Helps equalize pressure to reduce drag Including leading edge slats gives:
- Improved lift and angle of attack Choosing a top mounted configuration gives:
 - Easier to remove and swap if needed, can be additionally supported by struts

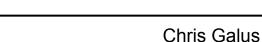


Figure 3: Hoerner tip [G]

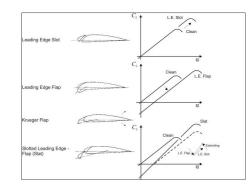
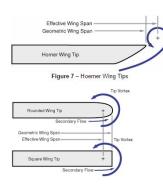
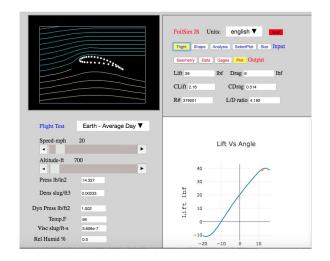



Figure 2: Leading Edge Slats [D]



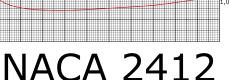
Concept Evaluation: Wings

- Created an Excel spreadsheet to calculate lift while changing span, chord, angle of attack, and Reynold's number
- Used FoilSim from NASA to confirm calculations for each airfoil and given geometry

Lift Equation			Calculated Lift		last year 16.4	in chord		
$L = Cl * [p*V^2]/2 Wa$			39.67426377				-	
Weight to carry	15	lb				Í		
Lift Needed	40.25	lb						
			Airfoil	USA35B	NACA2412	E61		0
V	32.81	ft/s	Cl	1.6	1.35	1.6		v = 32.81 ft/s
mu	3.687E-07	lb s/ft^2	AR	4.5454	3.4545	4.3333	-	
p	0.0021	sl/ft^3	Chord	2.2	2.7	2.25	ft	rho = 21e-4
Wing span	9.75	ft	AOA	12.5	15	8	degrees	
Chord Length	2.25	ft	L	39.79	39.14	39.67	lbf	mu = 3.687e-7
Wa	21.9375	ft^2				Į.		
Cl	1.6							
Cd						ĺ		
AOA	8	degrees						
Aspect Ratio	4.3333333333]		
Re#	420469.8942							
	-							
Rough nose length	1.95	ft				1		
Rough fuselodge length	7.3125	ft				Į.		
Rough tail length	3.9	ft						

Concept Generation: Empennage

Options: Layout


Pros: Manufacturability

Cons: Size, Placement Concerns

Pros: Size, Placement

Cons: Manufactuability, Weight, Placement **Options: Airfoils**

NACA 0012

Pros: Manufacturability, Easy to Modify

Cons: Low Lift

Pros: High Lift

Cons: Manufactuability, Hard to Modify

Jacob Cong

_

1/2

[A][B]

Concept Evaluation: Empennage

Decision: Conventional Tail

Decision: Symmetrical Airfoil (NACA 0012)

CR

ER

CR

Manufacturability

ER

- Weight
- Ease of Assembly
- Turning Capability

Reasons:

- T-Tail not necessary
- Manufacturability/Designability

Reasons:

- Manufacturability
- Can be integrated into "trimmable horiz. stabilizer"

Control Authority Manufacturability

Ease of Assembly

Turning Capability

2/2

Wing Design 🕢 Tail Layout (

EQUATIONS WILL FOLLOW

Concept Generation: Landing Gear, Configuration

Tail-dragger **Pro**: Landing capabilities (uneven surfaces) **Con**: High angle of attack on take-off Tricycle ("Nose-Gear") **Pro**: Highest stability & control on take-off **Con**: Requires smooth runway

Nathan Valenzuela

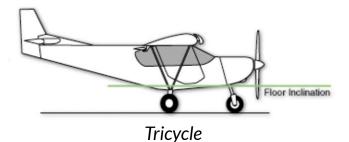
1/3

Concept Generation: Landing Gear, Suspension

Suspension

- Aids the absorption and dissipation of kinetic energy experienced on landing impact.
 - Reduces the load transmitted to the airframe.

Tail-dragger vs Tricycle suspension


Nathan Valenzuela

Concept Evaluation: Landing Gear

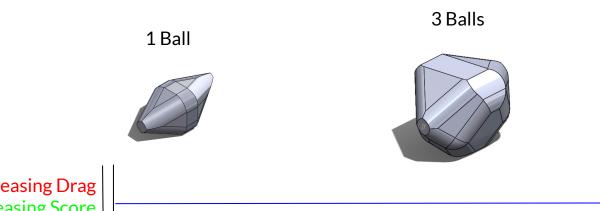
Relevant Customer Needs	Customer Weights	Tail-dragger	Tricycle
Manufactuability	7	9	9
Takeoff & Landing Capability	10	*	*
*Stability on ground	10	7	9
*Takeoff Capability	10	6	10
*Landing Capability	10	8	8
Flight Capability	8	6	7
Lightweight	7	6	8
Weighted Score	86.7	60.5	74.2

Tail-dragger

Nathan Valenzuela

Concept Generation: Payload Configuration

Concept Generation: Simple range of balls vs wt


CR: High Success Rate(Stability), Low Drag, Many Balls

10 Balls

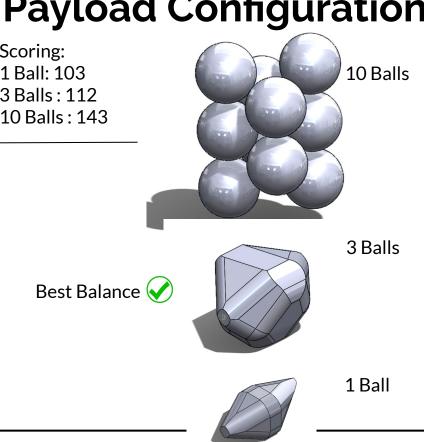
Alex Klausenstock

Increasing Drag **Increasing Score Decreasing Stability**

Concept Evaluation: Payload Configuration

SAE Aero Regular Design Calculation				Flight Score	Payload Prediction	Points
				44.58204334	9.609375	143.355505
Aircraft Wingspan	72	in	b			
Length of Cargo Bay	8.75	in	Lc	Plan for		
Number of soccer balls	10	ball	S	15 lb load		
Number of steel weights	10	lb	Ws	20 lb cabin weig	ht	
Actual Payload	19.375					
Predicted Payload	20					

Must be 5 balls per layer to make depth worth it 4-9 Balls not worth it


$$FS = Flight Score = 120 * \frac{2 * S + W_{steel}}{b + L_{cargo}}$$

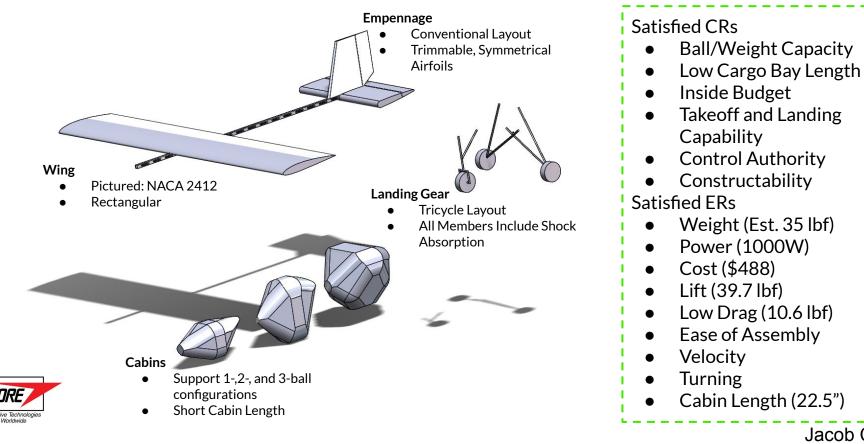
S = Number of Spherical Cargo Carried on a Flight W_{steel} = Regular Boxed Cargo Weight (lbs)

b = Aircraft Wingspan (inches)

 $L_{cargo} = Length of Cargo Bay (inches)$

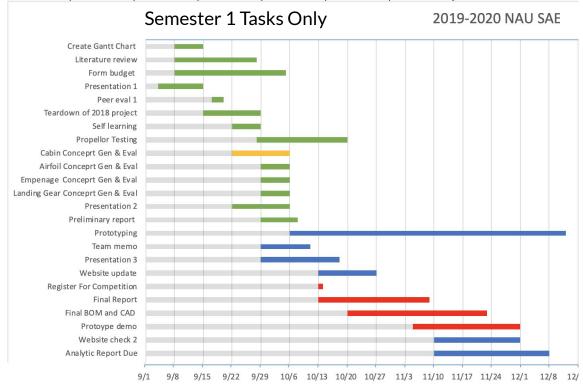
 $A = Actual Payload = W_{steel} + 0.9375 * S$

Alex Klausenstock


Budget

			BOM			
	Part	Quantity	Unit	Cost per Unit (\$)	Total Cost (\$)	Source URL
Electronics	Servos	4	Component	37.73	150.92	https://hitecrcd.co
	ESC	1	Component	124.95	124.95	http://www.castle
	Motor	1	Component	114.05	114.05	https://hobbyking
	Power Limiter	1	Component	75	75	https://neumotors
	Radio receiver	1	Component	64.99	64.99	https://www.horiz
	6S Lipo Battery	1	Battery	63.92	63.92	https://hobbyking
	Soccer Balls	3	Ball	8	24	https://www.adida
Structural	Bass wood	3	15 sheets of 1X24"	22.26	66.78	https://www.dickt
	Balsa wood	6	10 sheets	6.99	41.94	https://www.ama
	Wood Gule	4	Bottle	5.97	23.88	https://www.ama
	Aluminum 6063 T52	4	6 ft beam	35.72	142.88	https://www.meta
	Wheel	3	Wheel	19.94	59.82	https://www.horiz
				Total part value	953.13	
				To purchase	488.21	

	NAU SAE Preliminary Budget					
	Funding	Note				
	\$3,000.00	Gore Donation				
	Costs	Note				
	\$1,100.00	SAE Competition Entry Fee				
	\$488.00 BOM					
Gore Donation	\$500.00	Operating Redundancies				
Applicable	\$300.00	Manufacturing Equipment				
	\$400.00	Prototyping				
	\$100.00	Required Stickers and Gore Branding				
Summed	\$2,888.00	Gore Funding Usage. For use of plane parts, requirements, and construction only				
	\$500.00	2 Nights - Hotel				
Gore	\$250.00	Gas (1200 miles,17mpg, 3.50\$ per gallon)				
Donation Non-	\$25.00	SAE Membership (4 needed)				
Applicable	\$75.00	Academy of Model Aeronautics License				
	\$150.00	Team Shirts and Vehicle Markings				
Additional Funds Required	\$1,075.00	Not deductable from Gore donation, this is our target fund raising goal for memberships and travel expenses				
	Leftover	Note				
	\$112.00	Gore Funding Usage. For use of plane parts, requirements, and construction only				
	Fundraising Goal	Note				
	\$1,200.00	Total fund raising goal. Trip expenses				



Design Evaluation: Working Design

Jacob Cong

Schedule

DESCRIPTION	Team Member
Create Gantt Chart	Chris, Nate
Literature review	All members
Form budget	Nate
Presentation 1	All members
Peer eval 1	All members
Teardown of 2018 project	All members
Register For Competition	All members
Self learning	All members
Presentation 2	All members
Propellor Testing	All members
Cabin Conceprt Gen & Eval	All members
Airfoil Conceprt Gen & Eval	Chris, Alex
Empenage Conceprt Gen & Eval	Jacob
Landing Gear Conceprt Gen & Eval	Nate
Preliminary report	All members
Prototyping	All Members
Team memo	All members
Presentation 3	All members
Website update	Nate,Alex

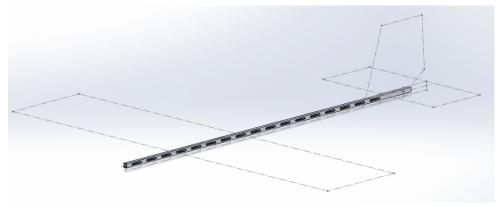
Q/A

Work Cited

- [A] AeroToolbox.net. (2019). Horizontal and Vertical Tail Design | AeroToolbox.net. [online] Available at: https://aerotoolbox.net/design-aircraft-tail/ [Accessed 1 Oct. 2019].
- [B] Wikimedia Commons contributors (2019). File:NACA 2412.svg Wikimedia Commons. [online] Commons.wikimedia.org. Available at: https://commons.wikimedia.org/w/index.php?title=File:NACA_2412.svg&oldid=146747312 [Accessed 3 Oct. 2019].

[C] Scholz, D. (2012). Aircraft Design. Berlin: Springer.

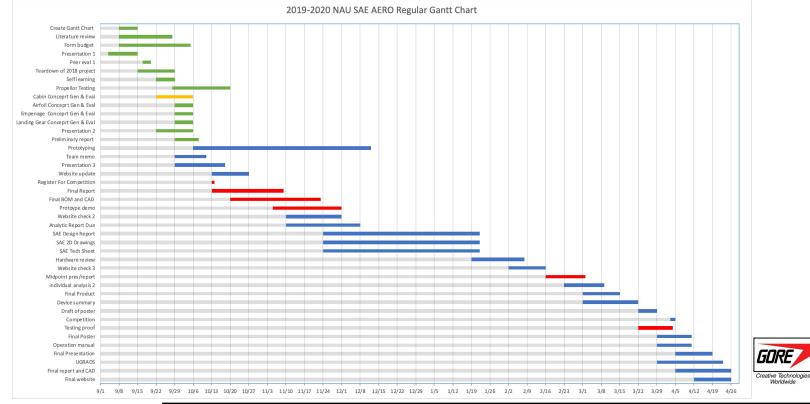
- [D] Fzt.haw-hamburg.de. (2019). [online] Available at: https://www.fzt.haw-hamburg.de/pers/Scholz/HOOU/AircraftDesign_8_HighLift.pdf [Accessed 6 Oct. 2019].
- [E] Grc.nasa.gov. (2019). FoilSim Student JS. [online] Available at: https://www.grc.nasa.gov/www/k-12/airplane/foil3.html [Accessed 6 Oct. 2019].
- [F] En.m.wikipedia.org. (2019). *Wing configuration*. [online] Available at: https://en.m.wikipedia.org/wiki/Wing_configuration [Accessed 6 Oct. 2019].
- [G] Kämpf, P. and Martin, W. (2019). *How do Hoerner Wingtips work?*. [online] Aviation Stack Exchange. Available at: https://aviation.stackexchange.com/questions/35069/how-do-hoerner-wingtips-work [Accessed 6 Oct. 2019].


Work Cited

- [H "Airfoil Tools NACA 2412," [Online]. Available: http://airfoiltools.com/airfoil/details?airfoil=naca2412-il. [Accessed 5 October 2019].
- C. Heinz, "Zenithair," 2009. [Online]. Available: http://www.zenithair.com/stolch801/design/design.html. [Accessed 5 October 2019].
- [J] M. Sadraey, "Chapter 9: Landing Gear Design," Daniel Webster College, pp. 1-61.

Appendix A: Equations

How the CAD works: Dimensions related by Equations



Name	Value / Equation	Evaluates to
Global Variables		
"Cmac"	= "Cmac@Sketch4"	20.00in
"Wing Span"	= "Wing Span@Sketch4"	108.00in
"HorizTailCord"	= "HorizTailCord@Sketch2"	14.00in
Add global variable		
Features		
Add feature suppression		
Equations		
"WingHoleSpace@Sketch4"	= "Cmac" / 3	6.67in
"WHS@Sketch4"	= "WingHoleSpace@Sketch4"	6.67in
"lever@Sketch4"	= "Cmac" * 3	60.00in
"ElevatorCord@Sketch2"	= "HorizTailCord" / 3	4.67in
"HorizTailSpan@Horiz Tail Lir	e = "HorizTailCord" * .5 * "Wing Span"	37.80in
Add aquation		

Jacob Cong

Appendix A: Gantt Chart

Jacob Cong