Testing Proof Thermodynamics Demo Unit 1B August 3, 2018

Engineering Requirements	Target	Units	Justification
Work Output	20 Watt	Watt	Production of power from turbines will turn on a light bulb connected to the system.
Aerodynamic	>.3	Cď	Minimizing aerodynamic drag will increase the power produced from turbines
Thermal Capacity	100	<i>K/m</i> ²	Implementation of a heat exchanger, will provide the data for interactive graphs
Volume	<.5	<i>m</i> ³	Constant volume measurements for each process of cycle is required for P-v diagrams
Data Acquisition	Pressure and Temperature	Pa, K	To create a realtime chart for T-s & P-v diagrams to simulate a Brayton Cycle

Table 1: Original Engineering Requirements

Work Output

The LED strip shorted and was unable to operate from the DC brushless motor. A theoretical output was .46 kW. After putting the multimeter to the rotating DC motor, a voltage of 10 and amperage of 9 produced 90 Watts of power. This 90 Watts of power is significantly lower than the theoretical .46 kW, due to inefficiencies in the blades and the material not being able to withstand the forces to generate the power. To achieve the power output, a different material than PLA must be chosen.

Aerodynamic values for a flat plate at different angles of attack

Compressor blade 1: Angle of attack: 52.51° Coefficient of drag: 0.82 Compressor blade 2: Angle of attack: 52.51° Coefficient of drag: 0.82 Compressor blade 3: Angle of attack: 52.51° Coefficient of drag: 0.82 Compressor blade 4: Angle of attack: 37.62° Coefficient of drag: 0.57 Compressor blade 5: Angle of attack: 30.74° Coefficient of drag: 0.51 Compressor blade 6: 25.79° Angle of attack: 25.79° Coefficient of drag: 0.42

Upon creation of the Engineering Requirements, the team used drag coefficients to determine the blades efficiency. However, upon reflection the team should have used lift coefficients instead because the lift force from the blades is what determines the rotational speed of the shaft.

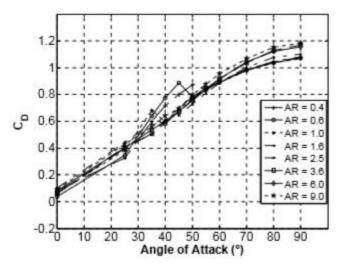


Figure 1: Angle of Attack vs Coefficient of Drag for a Flat Plate

Source: www.mdpi.com/1996-1073/8/4/2438/pdf

Thermal Capacity

During the initial creation of the Engineering Requirements, thermal capacity carried the incorrect units. Upon purchasing Mild Steel for the heat sink, it was researched to find that Mild Steel has a specific heat capacity of 510.7896 J/kg • K.

Specific Heat Capacity of Metals Table Chart						
Metal	Btu/(lb-°F)	J/(kg-K)	J/(g-°C)	Btu/(lb-°C)		
Steel, Mild	0.122	510.7896	0.5107896	0.2196		
Steel, Stainless 304	0.120	502.416	0.502416	0.216		
Steel, Stainless 430	0.110	460.548	0.460548	0.198		

Table 2: Specific Heat Capacity of Selected Metals

Source:

https://www.engineersedge.com/materials/specific_heat_capacity_of_metals_13259.htm

Volume

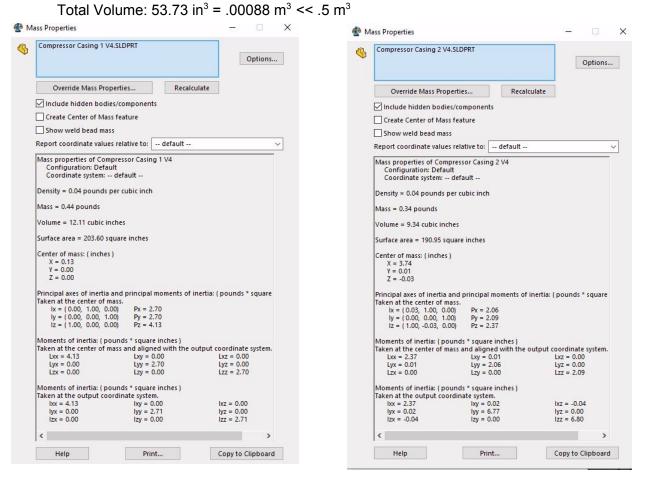


Figure 2: Volume of Casings

Turbine Casing 1 V4.SLDPRT		Options	4	Turbine Casing 2 V4.SLDPRT		Optio	on
Override Mass Properties	Recalcula	ite		Override Mass Propertie	s Recalcu	ulate	
Include hidden bodies/com	ponents			Include hidden bodies/cor	nponents		
Create Center of Mass featu	ire			Create Center of Mass feat	ure		
Show weld bead mass				Show weld bead mass			
Report coordinate values relati	ve to: default	~		Report coordinate values rela	tive to: default		_
Mass properties of Turbine Ca Configuration: Default Coordinate system: defau				Mass properties of Turbine Ca Configuration: Default Coordinate system: defa	-		
Density = 0.04 pounds per cut	oic inch			Density = 0.04 pounds per cu	ibic inch		
Mass = 0.18 pounds				Mass = 0.49 pounds			
Volume = 5.04 cubic inches				Volume = 13.62 cubic inches			
Surface area = 109.00 square i	nches			Surface area = 250.60 square	inches		
Center of mass: (inches) X = 2.86 Y = 0.02 Z = 0.00				Center of mass: (inches) X = 0.00 Y = 0.00 Z = -0.48			
Principal axes of inertia and pr Taken at the center of mass. Ix = (-0.01, 1.00, 0.00) Iy = (0.00, 0.00, 1.00) Iz = (1.00, 0.01, 0.00)	incipal moments of ine Px = 0.71 Py = 0.71 Pz = 1.18	rtia: (pounds * square		Principal axes of inertia and p Taken at the center of mass. Ix = (0.04, 1.00, 0.00) Iy = (-1.00, 0.04, 0.00) Iz = (0.00, 0.00, 1.00)	principal moments of in Px = 2.35 Py = 2.35 Pz = 3.98	nertia: (pounds * squ	ar
Moments of inertia: (pounds Taken at the center of mass an		nut coordinate system.		Moments of inertia: (pounds Taken at the center of mass a		utput coordinate syst	en
Lxx = 1.18	Lxy = 0.00	Lxz = 0.00		Lxx = 2.35	Lxy = 0.00	Lxz = 0.00	
Lyx = 0.00 Lzx = 0.00	Lyy = 0.71 Lzy = 0.00	Lyz = 0.00 Lzz = 0.71		Lyx = 0.00 Lzx = 0.00	Lyy = 2.35 Lzy = 0.00	Lyz = 0.00 Lzz = 3.98	
Moments of inertia: (pounds Taken at the output coordinat	e system.			Moments of inertia: (pounds Taken at the output coordina	te system.		
ixx = 1.18 iyx = 0.01	lxy = 0.01 lyy = 2.20	ixz = 0.00 iyz = 0.00		lxx = 2.47 lyx = 0.00	lxy = 0.00 lyy = 2.47	lxz = 0.00 lyz = 0.00	
$I_{JX} = 0.01$ $I_{ZX} = 0.00$	Iyy = 2.20 Izy = 0.00	1yz = 0.00 1zz = 2.20		Izx = 0.00	lzy = 0.00	lzz = 3.98	
<		>		<			

Figure 3: Volume of Casings

Turbine Casing 3 V4.SLDPRT		
-		Options
		Options
Override Mass Propertie	es Recald	culate
Include hidden bodies/co	mponents	
Create Center of Mass fea	ture	
Show weld bead mass		
Report coordinate values rela	ative to: default	
Mass properties of Turbine C	asing 3 V4	
Configuration: Default Coordinate system: defa	-	
Density = 0.04 pounds per cu	ubic inch	
Mass = 0.49 pounds		
Volume = 13.62 cubic inches		
Surface area = 266.46 square	inches	
Center of mass: (inches)		
X = 0.00		
Y = 0.00 Z = -0.25		
Principal axes of inertia and j	aviaciant manaats of i	inantia: (navinda * animu
Taken at the center of mass.	principal moments of	inertia: (pounds - square
lx = (0.69, 0.73, 0.00)		
ly = (-0.73, 0.69, 0.00)		
Iz = (0.00, 0.00, 1.00)	Pz = 4.71	
Moments of inertia: (pound:		
Taken at the center of mass a		
Lxx = 2.60 Lyx = 0.00	Lxy = 0.00 Lyy = 2.60	Lxz = 0.00 Lyz = 0.00
$L_{ZX} = 0.00$	Lzy = 0.00	Lzz = 4.71
Moments of inertia: (pound:	s * square inches)	
Taken at the output coordina		
lxx = 2.63	lxy = 0.00	Ixz = 0.00
lyx = 0.00	lyy = 2.63 lzy = 0.00	lyz = 0.00
Izx = 0.00		Izz = 4.71

Figure 4: Volume of Casings

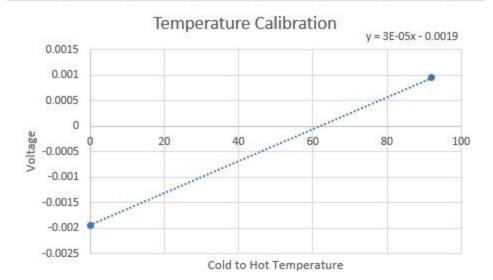

Data Acquisition

Table 3:	Temperature	Voltages
----------	-------------	----------

Time	Voltage_0	Voltage_:	1 Voltage_2	Voltage_	Voltage_	4 Voltage
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
######################################	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
######################################	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
######################################	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
*****	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95
#########	17.6743	-2455.95	-2455.95	-2455.95	-2455.95	-2455.95

Equation for temperature calibration: y = 3E-05x - 0.0019

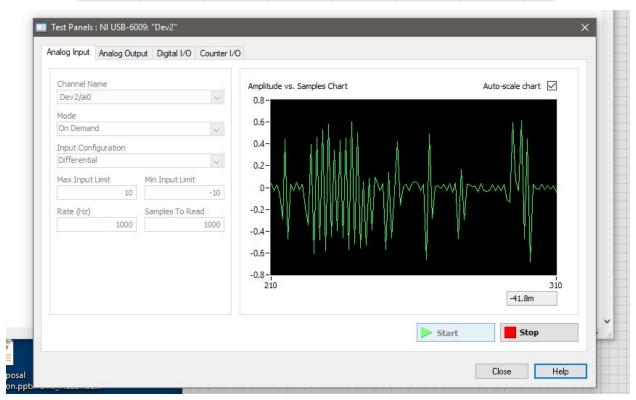


Figure 5: Pressure Transducer Voltages