Renewable Energy Toolkit Team A5

PRESENTED BY: MOHAMMED JARKHI, TALAL ALENEZI, MOHAMMAD ALSHARIDAH, FAHAD ALSUWAILEM, HAMAD ALSHARHAN

Project Description

- Goal:
 - Create a renewable energy toolkit to educate students and adults from around the world about how to implement renewable energy sources.

• Renewable Energy Sources included:

- Solar Photovoltaic cells (PV)
- Biomass Air Stirling Engine
- Wind Turbine
- Water Wheel Turbine
- Load

- Clients:
 - Dr. Tom Acker
 - Mark Glauth

Hamad Alsharhan , Renewable Energy Toolkit Team A5 03/15/2018

PhotoVoltaic Solar Cells

Updates:

- Tablet holder
- Protractor
- Digital angle finder
- Compass

Figure 1: PV Solar Set-up

IA Experiment 1 Summary

- Sun is low during winter & high during Summer
- Finding Angle depends on:
 - a) Time
 - b) Location
- Calculation Method:
 - 1) 15° Method:
 - a) During Winter: tilt angle is calculated by adding 15° to your latitude
 - b) During Summer: tilt angle is measured by subtracting 15° from your latitude
- Solar gives highest energy when they are directly facing sun

Hamad Alsharhan , Renewable Energy Toolkit Team A5 03/15/2018

Air Stirling Engine

Updates:

- New Air stirling engine
- Because of the heat from denatured alcohol, the engine will run madly and create the electricity
- Speed:1300 to 1500 RPM
- Weight: 350g
- Size: 180mm X 90mm X 90mm
- Material: Glass, Wood and Aluminium

IA Experiment 2 Summary:

- Fill up a small can and fire it up then we will see the stirling engine spin
- Determination of the amount of power a Air stirling Engine can produce

Figure 2 : Air Stirling Engine

Wind Turbine

Updates:

- New Wind turbine:-
- Rotor type: Horizontal axis
- Generator type: 12 Volt
- Maximum Generator Output: 15 watts
- Turbine Weight: 1 lb
- Cut in wind speed: Approximately 6mph*
- Telescoping extension pole:-
- 6.5-to-18 foot
- Anemometer

Figure 3 : Wind Turbine

Wind Turbine

Final Design specifications:

- Connect the wind turbine with the telescoping extension
- Then connect the anemometer with the wind turbine

IA Experiment 3 Summary:

- Conversion of energy takes place from kinetic to electrical
- The places where this installation should be done

Figure 4 : Anemometer

Talal Alenezi, Renewable Energy Toolkit Team A5 03/15/2018

Water Wheel Turbine

Updates:

- Bearings
- 15 watts DC motor with gearbox ratio of 50:1
- Aluminum shaft
- Change wheel

Figure 5 : Water Wheel New Stuff

Water Wheel Turbine

Final Design specifications:

- Build new shaft and Wheel
- Check the torque for gearbox to generate power
- Test design by water sink in Rm 111 Eng Building

IA Experiment 4 Summary:

- Determination of the amount of power a water wheel turbine can produce
- Process of converting potential energy into mechanical energy and electrical energy

Figure 7 : CAD New Wheel

Fahad Alsuwailem , Renewable Energy Toolkit Team A5 03/15/2018

Load Box

Updates:

- Watt Meter
- 4 Light bulbs (each 15 W)
- 4 Light Socket Lamp Holder
- Fuse
- Fuse Holder
- 4 Switches

Figure 8: Load box setup

Mohammed Jarkhi , Renewable Energy Toolkit Team A5 03/15/2018

Load Box

Final Design specifications:

- Build the load box
- Test it with each power source

IA Experiment 5 Summary

- How to put together the load box
- The load box will be tested with a battery

Figure 9: CAD load box

Mohammed Jarkhi , Renewable Energy Toolkit Team A5 03/15/201

Moving Forward

Table 1: Gantt Chart

Name	Begin date	End date	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15
Midpoint Report	3/5/18	3/16/18								
Midpoint Presentation	3/13/18	3/15/18								
Spring Break	3/19/18	3/23/18								
Final Manufacturing	3/19/18	4/1/18								
Final Product Testing	3/25/18	4/5/18								
Op/Assembly Manual	3/25/18	4/16/18								
UGRADS Poster	3/25/18	4/23/18								
Final Report	3/25/18	4/30/18								
CAD Package	3/25/18	4/30/18								

Mohammed Jarkhi , Renewable Energy Toolkit Team A5 03/15/2018

Budget

• Under-budget

Table 2: Estimated Budget

Predicted Expenses	Current Expenses	Future Expenses
\$1000	\$886.51	\$100

Questions?

