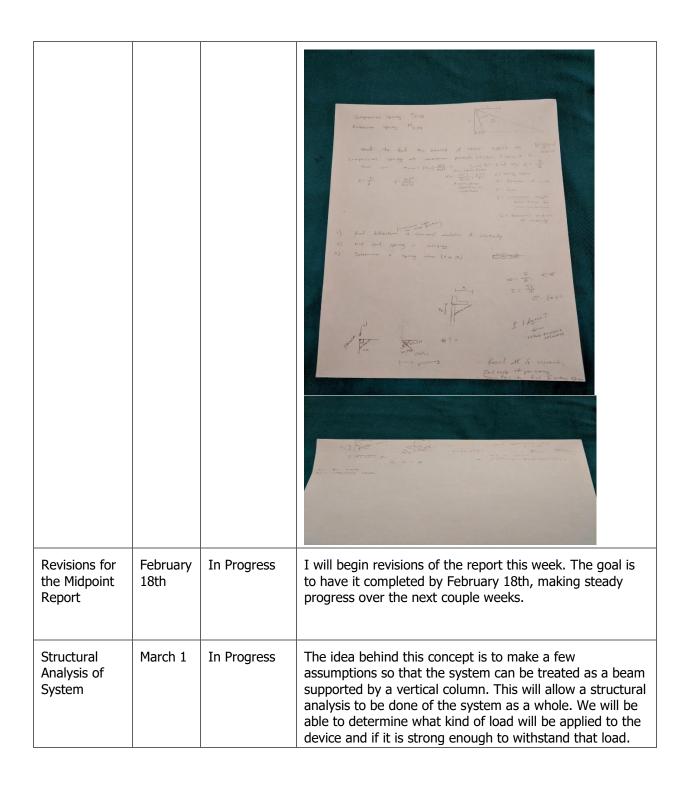
TEAM: F18 BiOM Prosthesis Adapter

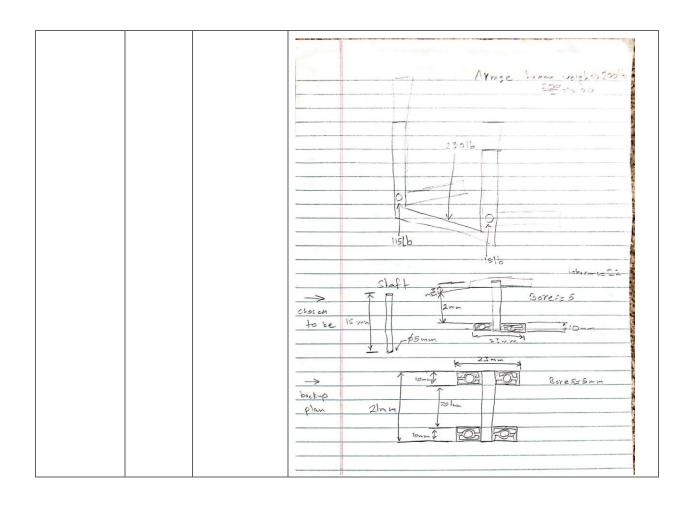

Due Date:

Monday, February 4th, 2019 5:30pm

The following are the Action Items from last week:

Team Member: Dominic Kristich

Action	Date	Date	Result/Proof of Completion
Item	Due	Completed	
Determine spring specifications for design	February 6th	In Progress	The math for determining the springs to be used for the device is almost completed. The math for determining the springs to be used for the device is almost completed. The math for determining the springs to be used for the device is almost completed. The math for determining the springs to be used for the device is almost completed. The math for determining the springs to be used for the device is almost completed. The math for determining the springs to be used for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost completed. The math for determining the spring such discount for the device is almost complete in the spring such discount for



Action Item

Meet with Dr.Tester about the BiOM Attachment	February 4th	January 31st	I have met with Dr.Tester and he referred me to Hanger Clinic. I set an appointment with a prosthetist and i asked him if he could help me buy the BiOM attachment and he gave me three attachments.
Choose the Right Aluminum Tube to Purchase	February 4th	February 3rd	Link to purchase the Pylon: https://www.metalsdepot.com/aluminum- products/aluminum-round-tube Part# T3R114065 Part# T3R114125
Shoulder Bolt Technical Analysis	February 18th	In Progress	The report will analyze forces and stresses developed in the shoulder bolt joint. Bolts are installed with a preload that ensures the joint members remain clamped and in compression throughout the life of the joint. The analysis will also calculate and determine the optimum preload value and specified as a percentage of the bolt material's tensile yield strength and the bolt stiffness. The total tensile force on the bolt is due to two components: the preload force and the applied tensile load. The values of these components for each portion of the bolt load curve will be calculated.

Action	Date	Date	Result/Proof of Completion
Item	Due	Completed	

Choose the Right Bearing to Purchase & update Bearing CAD Part.	February 4th	February 3rd	Link to purchase Bearing- Part Number 2782T81 https://www.mcmaster.com/2782t81
Complete Bearing Technical Analysis	March 1st	In progress	Calculation of Radial Force Applied to the Bearing. Waiting for Mcmaster carr to email me back the Life Rating of the Beating that we are going to use to complete calculation.

<u>-</u>	
	Data collected on Nishikawa's Lab
	m = 45.3 kg Francapplied = 503 N
	W=444.4N
	503 => 113°1°
	Average human W-2001b
	$m = \frac{2\infty}{2.2} \Rightarrow 91 \text{ kg}$
	metric =>W = 90kg (9.81程) =>W = 8月2刊
	Fmax = (1.13) (892.9) => 1010N
	1010 > 102.82 kg
	(102.82 kg) (2.21b) => 227 lbs
	Fmax st 200 lb => 227 lbs = 230 lbs
	Force will be distributed on two points $\frac{230}{2} \Rightarrow 115 \text{ b}, \frac{1010}{2} \Rightarrow 505 \text{ N}$
	$\frac{23}{2} \Rightarrow 5 _{b}$ $\frac{2}{2} \Rightarrow 505N$
	Frax for each bearing => 11.5 lb. => 505 N
	750510

			na shating speed "rev/min" $L_{R} = \text{prating life}$ in hours" $F_{D} = \text{desired mind}$ $L_{D} = \text{life}$ "Exc. 10000h" $ \text{lond} \text{ "libt or kN"} \text{no.} \Rightarrow \text{lesicred Speed} \text{ Ev. 3. 1725 rve/m.} $ $C_{O} \Rightarrow F_{D} \left(\frac{L_{D} \text{ no.} 60}{L_{R} \text{ no.} 60}\right)^{\frac{1}{12}} \Rightarrow F_{R} \Rightarrow F_{D} \left(\frac{L_{D}}{L_{R}}\right)^{\frac{1}{12}}$ $F_{D} \approx 1608. \text{ 70245 lb} = \text{161/2} \Rightarrow 30.5 \text{ rev/min}$ Average steps/min $\Rightarrow 61 \Rightarrow 61/2 \Rightarrow 30.5 \text{ rev/min}$ $F_{D} = 1010 \text{ N}$ $F_{R} = 505 \left(\frac{(\text{lobelors}) \text{ 60}}{L_{R} \text{ no.} 60}\right)^{\frac{1}{12}}$ $\Rightarrow F_{R} = 505 \text{ N} \left(\frac{(\text{lobooh})(30.5 \text{ rew/min}) \text{ 60}}{(\text{5000 rev/min}) \text{ 60}}\right)$
Look for help from Dr.Ciocanel regarding Technical	February 1st	Jan 29th	Referred me to use Ball Bearings, Because we only Have radial force applied to the point where we are going to install the bearings.

|--|

Make carbon fiber template for lay-up process	February 4th	February 3rd	Carbon Fiber Template X 8 layers 19
Layup carbon fiber	February 11th	Not Complete	I could not complete this task due to the team missing an item in the previous order. I am currently in contact with the company to retrieve the item as soon as possible.
Complete analysis on U-bar system to determine how many layers of carbon fiber will be needed per the specified loading	February 4th	In progress	This task requires more time than expected. Here is an update on the progress so far: • Determine loading on the U-bar Complete • Determine stress on the U-bar Complete • Ask graduate student and Dr. Penado about how to calculate yield stress of carbon fiber depending on the orientation of the fibers In progress • Set up stress equation Complete • Solve stress equation to determine the minimal thickness of carbon fiber needed to support given load. Incomplete • Determine how many layers are needed per the thickness of carbon fiber. Incomplete
Second Purchase Order	February 6th	February 4th	Since I was unable to layup carbon fiber, I completed the purchase request for this coming week. The team will require more materials by February 11th to stay on track.

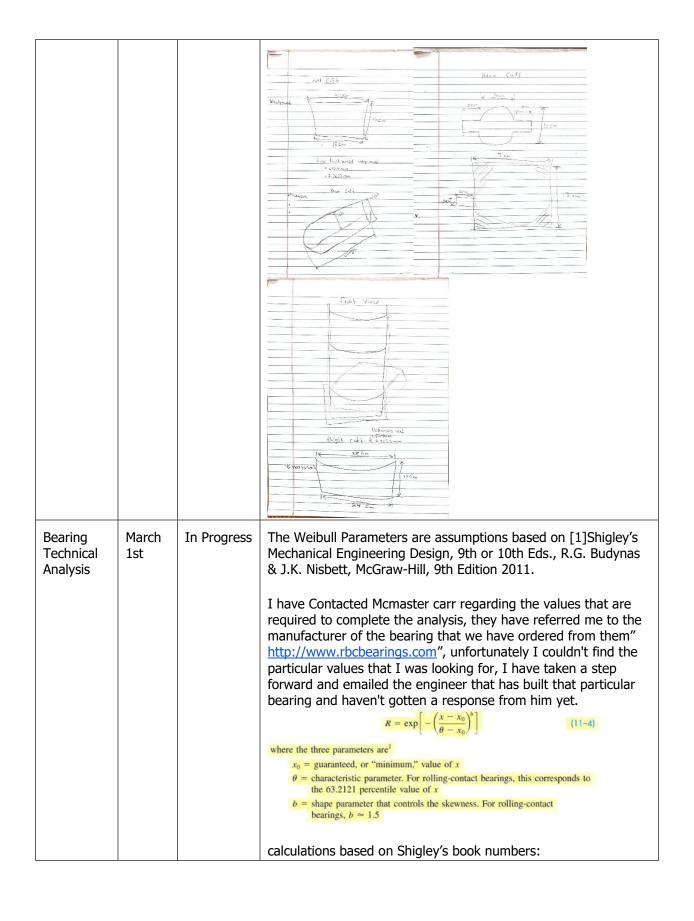
Vendor	Web address	Description	catalog #/part #/SKU	qty	cost/qty	overall cost
Rock West Composites	composites.com/mater ials-tools/vacuum-bagg ing-materials/tapes/30		3009-D	1	\$9.99	\$9.99
Amazon	09-d https://www.amazon.c om/SeatPost-Aluminiu m-Seatpost-Cannondal e-Specialized/dp/8017 TPUHJC/ref=sr 1 187i	bike clamp with ID ranging between 31.75mm and 25 mm ODIER Bike Bicycle Quick Release SeatPost Clamp	N/A	1	\$8.29	\$8.29
McMaster-Carr		small aluminum tubing :	9056K75	1ft	\$11.31	\$11.31
McMaster-Carr	https://www.mcmaste r.com/aluminum-tubin g	larger aluminum tubing : wall thickness of 0.065" with OD of 1.25" and 1 foot long	9056K76	1ft	\$13.08	\$13.08
McMaster-Carr	https://www.mcmaste r.com/standard-ball-an d-roller-bearings	bearings: sealed with extended inner ring. Shaft diameter of 0.25", Inner Ring OD 0.313"	6384K342	2	\$9.88	\$19.76
McMaster-Carr	https://www.mcmaste r.com/shoulder-bolts	shoulder boits : 0.25" OD and 3/4" long. Thread size of 10-24	91259A540	4	\$1.19	\$4.76
McMaster-Carr	https://www.mcmaste r.com/hex-locknuts	Locknuts : 6061 aluminum threadsize of 10-24.	95856A225	1 pkg	\$4.04	\$4.04
Unable order due to incomplete technical analysis		extension spring				
Unable to order due to incomplete technical analysis		compression spring				
McMaster-Carr	https://www.mcmaste r.com/springs	smaller compression spring : 0.375" long, ID of 0.256" compression spring	9657K265	1 pkg	\$10.50	\$10.51

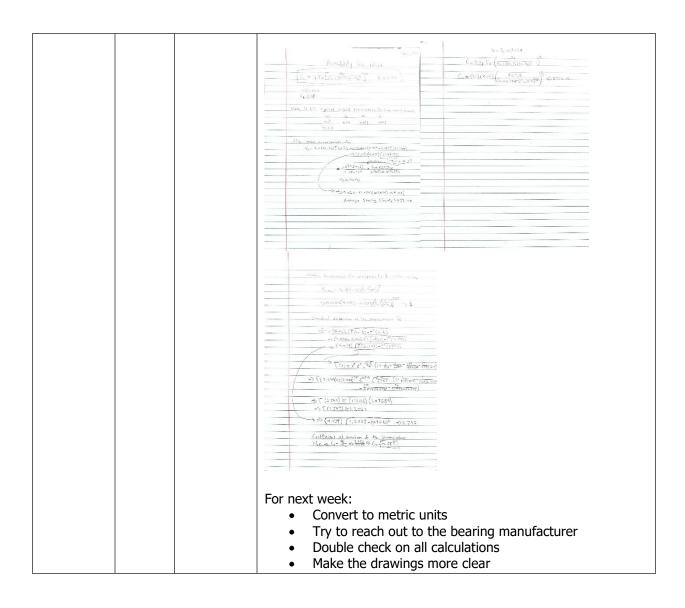
Team Member	Action Items	Date Due			
Abdulla Ghayeb	 Complete Bearing Technical Analysis [~3 hours] Help Leah Manufacture cuffs from thermoplastic (3) [~2 hours] Update Website [~1 hour] 	 February 11th February 11th February 7th 			
Ebrahim Hubail	 Work on Shoulder Bolt Technical Analysis [~4 hours] Help Leah Manufacture cuffs from thermoplastic (3) [~2 hours] 	1. February 11th 2. February 18th			
Dominic Kristich	 Complete Analysis to Determine Spring Specifications [~2 hours] Complete up to 75% of report revisions[~3 hours] 	 February 6th February 11th 			
Leah Liebelt	 Manufacture cuffs from thermoplastic (3) [~2 hours] Complete U bar analysis [~4 hours] 	 February 11th February 11th 			

TEAM: F18 BiOM Prosthesis Adapter

Due Date:

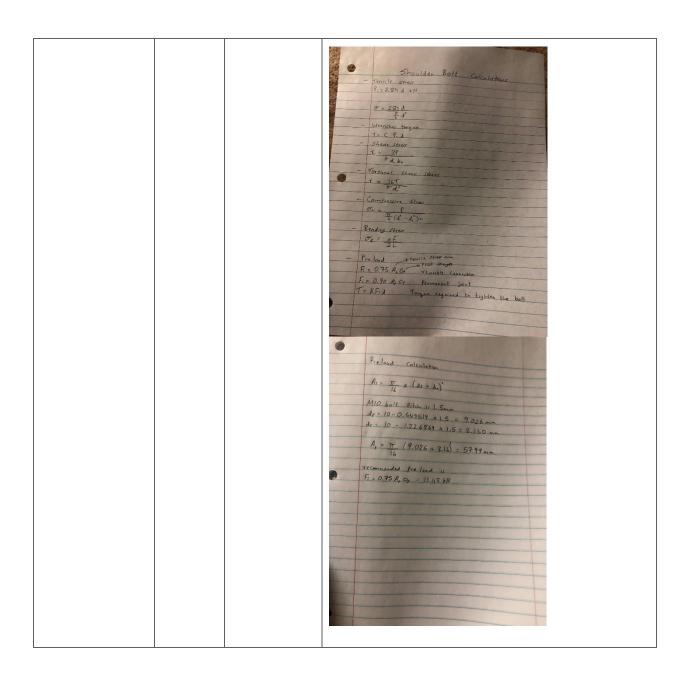
Monday, February 11th, 2019 5:30pm


The following are the Action Items from last week:


Team Member: Dominic Kristich

Action Item	Date Due	Date Completed	Result/Proof of Completion
Complete spring analysis	Feb 6th	Not Yet Completed	No progress made this past week.
Complete 75% of report revisions	Feb 18th	Not Yet Completed	No progress made this past week.
Structural Analysis of System	March 1	In Progress	No progress made this past week.

Action Item	Date Due	Date Complet ed	Result/Proof of Completion
Website	Februa	February	Updated:Meeting MinutesBOM
Update	ry 8th	6th	


			Added Action Items and submitted website check-1 link to website: https://www.cefns.nau.edu/capstone/projects/ME/2018/18F1_BI_OMAdapter/
Manufactur e calf cuffs, thigh cuffs, and knee brace from thermoplas tic	Februa ry 11th	February 8th	

Action Item	Date Date Completed	Result/Proof of Completion
-------------	---------------------	----------------------------

Manufacture calf cuffs, thigh cuffs, and knee brace from thermoplastic	February 11th	February 8th	
Shoulder Bolt Technical Analysis	March 1st	In Progress	This is the start up of my technical analysis, i made a research and figured out the equations that i am going to use from Shigley's Mechanical Engineering Design, 10th edition book.

Action Item	Date Due	Date Complet ed	Tim e Spe nt on Ite m	Result/Proof of Completion
----------------	-------------	-----------------------	-----------------------	----------------------------

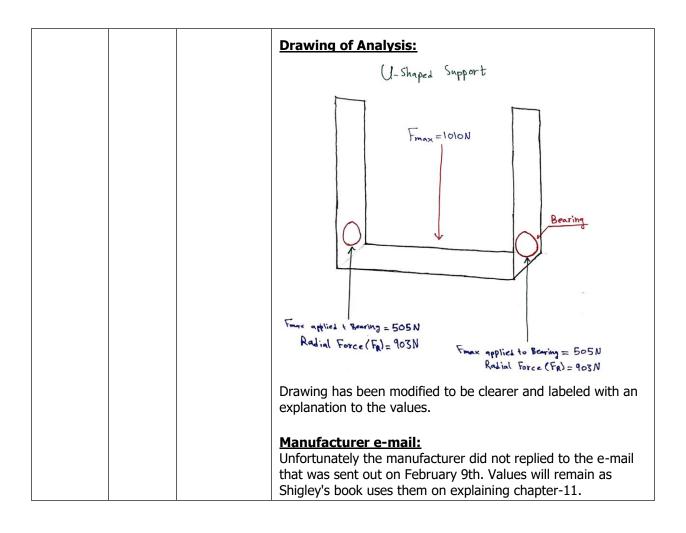
Manufactu re calf cuffs, thigh cuffs, and knee brace from thermopla stic	Februa ry 11th	February 8th	~ 3 hours	
Complete analysis on U-bar system to determine how many layers of carbon fiber will be needed per the specified loading	Februa ry 11th	February 10th	~ 4 hours	Tasks within Action Item: Determine loading on the U-bar Complete Determine stress on the U-bar Complete Ask graduate student and Dr. Penado about how to calculate yield stress of carbon fiber depending on the orientation of the fibers Complete - use Promal Program - 1860 MPa Set up stress equation Complete Solve stress equation to determine the minimal thickness of carbon fiber needed to support given load. Complete Determine how many layers are needed per the thickness of carbon fiber. Complete - 11 Layers for FS of 3

Team Member	Action Items	Date Due
Dominic Kristich	 Complete Spring Analysis [~2 hours] Complete 75% of report revisions [~3 hours] 	1. February 15th 2. Due date 2
Abdulla Ghayeb	 Complete Bearing Technical Analysis [~3 hours] Lay-up and Manufacture Carbon Fiber Side Supports (with Ebrahim and Leah) [~4 hours] 	1. March 1st 2. February 18th
Ebrahim Hubail	 Complete Shoulder Bolt Technical Analysis [~3 hours] Lay-up and Manufacture Carbon Fiber Side Supports (with Abdulla and Leah) [~4 hours] 	1. March 1st 2. February 18th
Leah Liebelt	 Lay-up and Manufacture Carbon Fiber Side Supports (with Ebrahim and Abdulla) [~7 hrs] 	1. February 18th

TEAM: F18 BiOM Prosthesis Adapter

Due Date:

Monday, February 18th, 2019 5:30pm


The following are the Action Items from last week:

Team Member: Dominic Kristich

Action Item	Date Due	Date Completed	Result/Proof of Completion
Spring Analysis	-	-	N/A
Report Revisions	-	-	N/A

Action	Date	Date	Result/Proof of Completion
Item	Due	Completed	
pylon	February	February	The two pylons that we have ordered was a perfectly fit into each others which indicates that the sizes was accurate. moreover, the clamp suited the large pylon which will only require the team to cut small part from the top so the clamp can compress on the pylon and apply the required stress to hold in place.
machining	18th	16th	
			The only issue was that the small pylon thickness cant fit in to the attachment of the BiOM. the BiOM attachment ID=30mm, the small pylon OD=31.7mm. when the pylon was machined down to OD=30.095mm, L=32. It have fitted the attachment.
			which concludes that the pylon is ready to be installed where it is just missing the attachment part to the U-shaped carbon fiber and to be attached with the springs.

Task have been Done By: Abdulla Ghayeb and Ebrahim Hubail, with the help of one of the 98C Lab Instructor. February **Final Calculations:** Bearing **February** 18th **Technical** 15th **Analysis** Radial Force (FR the mean dimensionless life $M_{x} = X_0 + (\Theta - X_0) \Gamma \left(1 + \frac{1}{b}\right)$ to Probability for failure Probability for failure (C,0)= 5930N

Action	Date	Date	Result/Proof of Completion
Item	Due	Completed	

Shoulder	February	February	shoulder bolt joint analysis
Bolt	18th	16th	References Mailings Review View Help 🔎 Tell me what you want to do
	1001	1001	Introduction
Technical			Forces and stresses developed in shoulder bolt joint
Analysis			There are various types of stresses that are developed in screw fasteners as a result of initial
1			tightening and external load. It is very crucial to determine the stresses in screw fastening as a result of both static and dynamic loading so that their dimensions can be determined. During
l			the designing of static loading it is important to know both the initial tightening and external
ı			loadings. The schematic presentation of the shoulder bolt joint is presented in figure 1 below.
ı			The state of the s
ı			
l			Shoulder bold
l			a u-shared Corbon filter
l			A Corpus times
l			1 a-chart
ı			
			e:on
			E
			Figure 1: diagram of shoulder bolt joint When a nut is tightened over a screw following there are five major stresses that are induced
			as follows:
			Tensile stresses due to stretching of the bolt Bolts are normally designed based on the factor of direct tensile stress with a large factor of
l			safety. The initial tension in the bolt is estimated by use of empirical relation P1=284 d kN.
			where the nominal bolt diameter d is given in mm. The major significance of making this relation is making the joint leak proof. Since the initial stress is inversely proportional to square
			of the diameter bolts which have a smaller diameter like M16 or M8 may fail during the first
			time of tightening. In such instances, there must be use of torque wrenches in the application of the known load. This can be shown by use of the following equation:
			Tensile stresses due to stretching of the bolt
ı			Bolts are normally designed based on the factor of direct tensile stress with a large factor of safety. The initial tension in the bolt is estimated by use of empirical relation P ₁ =284 d kN.
			where the nominal bolt diameter d is given in mm. The major significance of making this
			relation is making the joint leak proof. Since the initial stress is inversely proportional to square of the diameter bolts which have a smaller diameter like M16 or M8 may fail during the first
			time of tightening. In such instances, there must be use of torque wrenches in the application
			of the known load. This can be shown by use of the following equation: 284d
			$\sigma = \frac{2044}{\pi} \frac{1}{d^2}$
ı			4 (j) [1].
l			
l			In the wrenches torque is given by: T = C P1d(ii) [1]
l			where, C is a constant that is dependent on coefficient of friction at the joining surfaces, P is
ı			tightening up load and d is the bolt diameter. Shear stress across threads
			This is shown by use of the following equation.
			$\tau = \frac{3P}{P}$
			πd _c bn
			Where, T is the torque and d_c the core diameter.
1			
			SHOULDER BOLT JOINT ANALYSIS 3
l			Torsional shear stress
			This is experienced at the threads and it is due to frictional resistance. This is shown by use of the following equation.
			16T
			$\tau = \frac{1}{\pi d_{\perp}^{3}}$
			(xy) [1] Where, d is the core diameter; b is the base width of the thread and n is the number of threads that shares the load as a result of frictional resistance at the threads.
			Compressive stress on the threads It is also known as crushing stress and it normally occurs when the surfaces under the bolt head or nut are not in a perfect manner normal to the axis of the bolt.
ı			
			$\sigma_{c} = \frac{P}{\frac{\pi}{4} (d_{0}^{2} - d_{c}^{2})n} $ (v) [1]
I			Bending stress
			In case the underside of the bolt and the bolted part are not parallel, the bolt may be subjected to bending. In this regard, the bending stress may be given by the following equation:
			to bending. In this regard, the bending stress may be given by the following equation: $\sigma_{B} = \frac{xE}{2L}$
			$\sigma_{\rm B} = \frac{1}{2L} \qquad (vi) [1]$
			Where, x is the variation in height between the extreme corners of the bolt head, E is the
			young's modulus, and L is the length of the bolt head shank.
	1	1	Preload

	 I typed a rough draft in a word doc for my technical analysis and added equations. I am going to meet with Dr. Trevas this week to discuss with him about the calculations so i work with the right numbers.
--	---

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Carbon Fiber leg support layup	February 18th	February 16th	~3 hrs	8 layers of prepreg carbon fiber were stacked in preparation of the hardening process. Task have been completed by: Abdulla Ghayeb, Ebrahim Hubail, and Leah Liebelt.

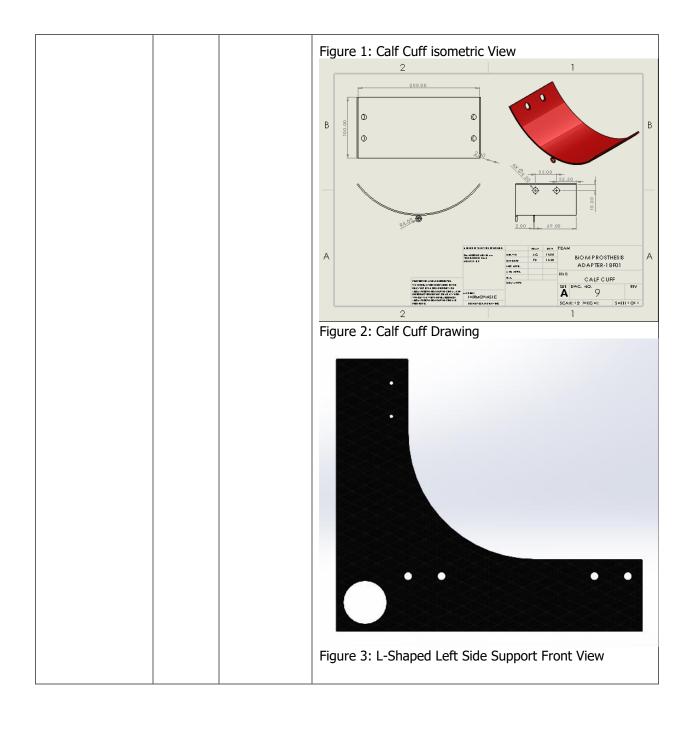
Harden the Carbon Fiber epoxy in the leg support layup	February 18th	February 16th	~3 hrs	Carbon fiber after epoxy hardened. Unfortunately, about 3 layers of carbon fiber delaminated from the other 5 layers in one set of leg supports. The other had a slight delamination in 1 outer layer. The cause of delamination is known to be a plastic adhesive
				had a slight delamination in 1 outer layer. The cause

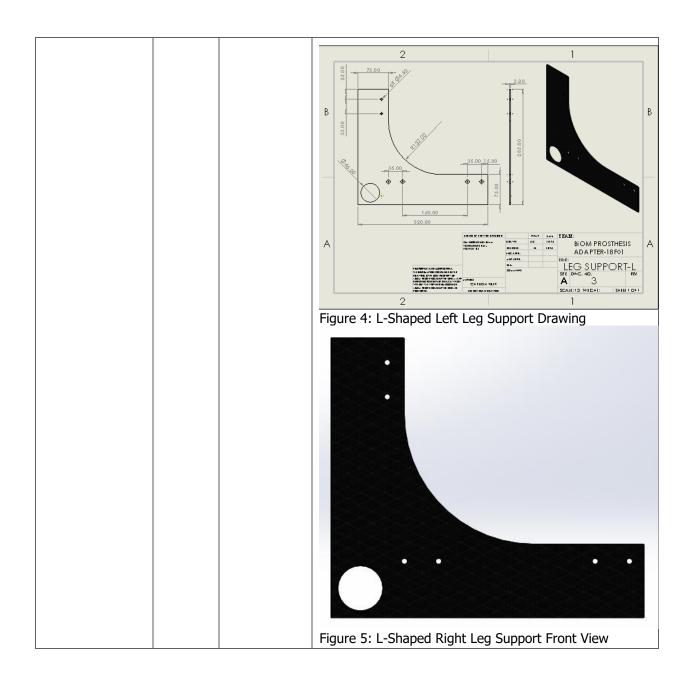
Team Member	Action Items	Date Due
Dominic Kristich	 Find dimensions for compression spring and expansion spring that attaches to pylon and leg support. Complete 25% of report revisions to prepare for midpoint report submission. Complete another 25% of report revisions to prepare for midpoint report submission. Conduct research on structural analysis of prosthetics for benchmarking of technical analysis. 	1. February 18th 2. February 21st 3. February 22nd 4. February 24th
Abdulla Ghayeb	 Complete Bearing Technical Analysis Apply equations to MATLAB. [~4 hr] Layup U shaped carbon fiber [~2 hr] 	1. February 24th

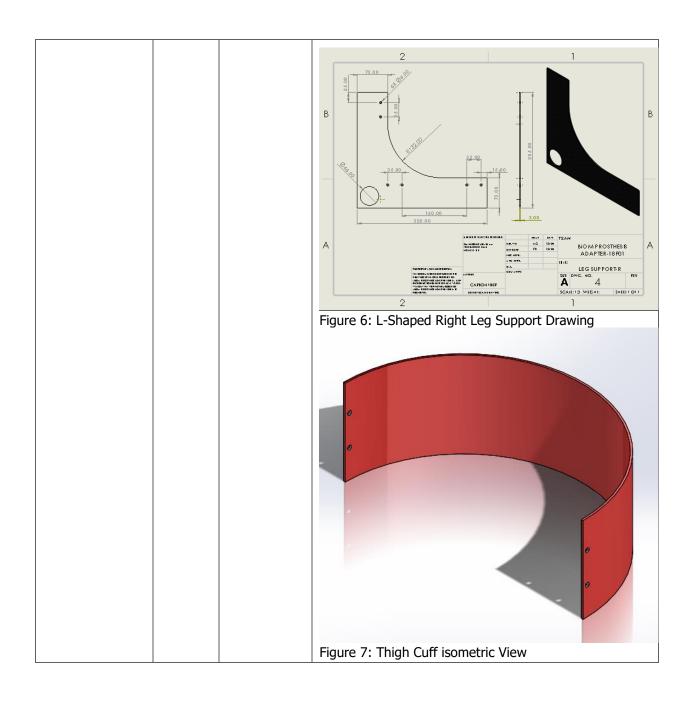
		2. February 24th
Ebrahim Hubail	 Complete Shoulder Bolt Technical Analysis Calculations [~3 hr] Layup U shaped carbon fiber [~2 hr] 	1. February 24th 2. February 24th
Leah Liebelt	 Epoxy two delaminated sheets of carbon fiber back together and harden again. Apply touch-up epoxy to carbon fiber plate to prevent delamination & help finish final product. [~1 hr] Clean up edges of carbon fiber plates using Dremel [~2 hr] Correct calculations for U shaped carbon fiber piece, integrate into the technical analysis report [~1.5 hr] Layup U shaped carbon fiber [~2 hr] Harden U shaped carbon fiber [~2 hr] 	1. February 19th 2. February 19th 3. February 22nd
		4. February 24th 5. February 25th

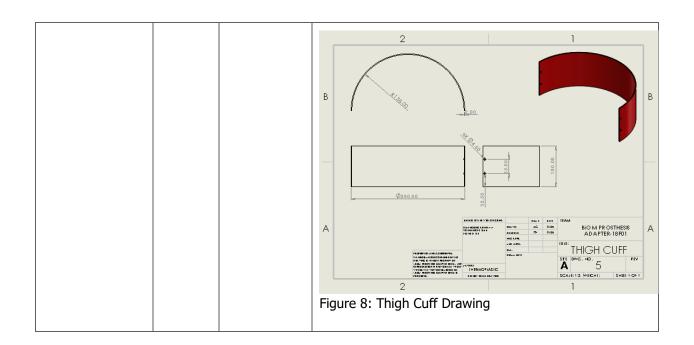
TEAM: F18 BiOM Prosthesis Adapter

Due Date:


Monday, February 25th, 2019 5:30pm


The following are the Action Items from last week:


Action Item	Date Due	Date Complete d	Result/Proof of Completion
Bearing Technical Analysis Apply equation s to MATLAB	Februar y 25th	February 21st	I have coded my equations and implemented it into MATLAB to get the results in neet form for the Bearing Technical Analysis. MATLAB: clc clear all % DATA collected on Nishikawa's lab fprintf('Data Collected on Nishikawa''s lab\n') m = 45.3; % mass is 45.3 Kg F_max_app = 503; % Maximum Force Applied W = 444.4; % W is 444.4N Ratio = F_max_app/W; fprintf('Mass = %.1f (kg), Maximum Force Applied = %.2f(N) \n',m,F_max_app) fprintf('W = %.2f(N), ',W) fprintf('Ratio = %0.2f %%\n',Ratio*100) % Required from Customer, Average Human Weight Wavg = 200; % Average Weight in lbs mavg = Wavg/2.2; % mass in Kg, for average human g = 9.81; % gravitational Constant W = mavg*g; % Weight of average human Fmax = Ratio*W; % Maximum Force Calculated fprintf('\n\nFor an average Human \n') fprintf('Mass = %.2f (kg)\n',mavg) fprintf('Weight = %.2f (N)\n',W) fprintf('Fmax = %.2f (N)\n',Fmax)
			% Force applied will be distributed on two bearings Fmax_each_bearing = Fmax/2;


```
fprintf('\n\prox for each bearing =
%.2f(N)\n',Fmax each bearing)
Fd = Fmax_each_bearing;
Ld = 10000;
               % Life Desired
nd = 61/2;
               % Speed Desired, average person
steps per minute
Lr = 3.2 *10^6; % Life rating given from the seller
FR = Fd *( ((Ld*nd*60)/Lr)^{(1/3)});
fprintf('Radial Force (FR) = \%0.1f(N)\n',FR)
% Assume Rd = 0.90
Rd = 0.90;
Xo = 0.02:
O = 4.459;
b = 1.483;
% From Table A-34, Integration
% Intq = 1+1/b
Intq = 0.9040;
% now putting in Eq-2
mu_x = Xo + (O-Xo)*Intg;
fprintf('mu_k = \%.3f\n',mu_x)
% Medium Dimension less life corresponds to R = 0.90
Or L90
R = 0.90:
X_0_90 = Xo + (O-Xo)*((log(1/R))^(1/b));
fprintf('X 0.90 = \%0.0f\n', X 0 90)
% Standard deviation of the dimension life
% define integral from the table
% Intg (1+2/b)
Int 2 349 = 1.2023;
Intg_2 = 0.9040;
% now sigmax
sigma_x = (O-Xo)*sqrt(Int_2_349 - Intg_2^2);
fprintf('\nStandard Deviation = Sigma_x = %.4f
n',sigma x)
% coefficient of variation
Cx = sigma x/mu x;
fprintf('Cx = \%.3f \n',Cx)
% Now For probability of Failure
af = 1.2;
a = 3;
Xd = FR;
C10 = af*Fd* ( ( (Xd)/(Xo + (O-Xo)*((1-
Rd)^(1/b))))^(1/a));
fprintf('C10 = \%.0f\n',C10)
Results:
```

	I	I	
			Data Collected on Nishikawa's lab Mass = 45.3 (kg) , Maximum Force Applied = 503.00(N) W = 444.40(N), Ratio = 113.19 %
			For an average Human Mass = 90.91 (kg) Weight = 891.82 (N) Fmax = 1009.42 (N)
			Fmax for each bearing = 504.71(N) Radial Force (FR) = 902.6(N) mu_k = 4.033 X_0.90 = 1
			Standard Deviation = Sigma_x = 2.7546 Cx = 0.683 C10 = 5934
CAD Package Update	Februar y 25th	February 23rd	The CAD Model that We have built in the Fall semester have to be updated, du to changes in dimensions and adding new components to the final device. The main issue on updating the CAD model was that most of the mates in the final assembly have been discarded. to fix this problem, the final Assembly should be reassembled because fixing it would take more time. this task would take a long time. Although the due date of submitting the final CAD package this semester is on April 29th. For this week, as a start the thigh cuff, Calf cuff, and L-Shaped Left & Right Side Support have been updated to current dimensions that the team have determined and manufactured.

Action	Date	Date	Result/Proof of Completion
Item	Due	Completed	

Complete Shoulder Bolt Technical Analysis	February 25th	February 24th	Preload The total tensile force on the bolt is due to two components namely: the preload force and applied tensile load. Preload can be described as a form of tension that is placed on the bolt by the nut but not as a result of the load [3]. It is normally applied to the connection by stretching the fastener to a certain value of torque. Torque is described as the turning moment of a nut, and is normally expressed as the product that is exerted and the length of the lever arm. There are numerous variables that are associated with the torque and therefore a safety factor is calculated to determine torque value which will lead to production of a clamp load which is lower than the yield point of that fastener. It is always crucial to ensure that, the preload does not exceed the maximum load by 15%. In normal circumstances, bolts are tightened through application of torque to the nut and this makes the bolt to stretch. On the other hand, the stretching leads to bolt tension, which is normally referred to as preload, that is, the force that holds a joint together. High preload tension is of great significance since it helps in keeping the bolts tight, increases the strength of a joint, leads to generation of friction between parts to resist shear and improves fatigue resistance of connections that are bolted. In order to measure the bolt tension, a torque meter is used. The preload can be determined at two levels as follows: In the case of reusable connection, the preload can be determined by:
			Fi= 0.75A ₂ G _p . (vii) [2] In the case of permanent joint, the preload can be determined by: Fi= 0.90A ₂ G _n . (viii) [2] Where, Δ_t is the tensile stress area of the bolt (m2) and Δ_t is the proof strength of the bolt (N/m2) After determining the preload, the torque required to tighten the bolt can be estimated by use of the following equation: T = KF ₂ d. (ix) [2] Where T is wrench torque (N m); d is nominal bolt diameter (m), F ₁ is preload (N), and K is constant. However, the value of K is dependent on the material and size of the bolt and hence the variation which is evidenced. For instance, in case of zinc plated steel bolts, todamium plated steel bolts, the constant K is 0.2, 0.18, and 0.16 respectively. calculation of preload In this case an assumption is made that M10 bolt will be used which has a proof stress of low carbon steel bolt material of 310 MPa. In order to determine the preload on the load on the bolt, the following formula a applied. $A_t = \frac{\pi}{16} \times (d_p + d_\tau)^2$ The pitch for M10 bolt is 1.5mm. $d_p = 10 - 0.649519 \times 1.5 = 9.026 \text{ mm}$ $d_z = 10 - 1.226869 \times 1.5 = 8.166 \text{ mm}$ $d_z = 10 - 0.649519 \times 1.5 = 9.026 \text{ mm}$ $d_z = 10 - 0.0649519 \times 1.5 = 8.166 \text{ mm}$ $d_z = 10 - 0.0649519 \times 1.5 = 8.166 \text{ mm}$ $d_z = 10 - 0.0649519 \times 1.5 = 8.166 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.075\Delta_{z} = 13.48 \times 100 \text{ mm}$ $d_z = 10 - 0.0$
			Therefore, the recommended preload is Fi = 0.75A _t c ₀ = 13.48 kM Appropriate bolt stiffness Every bolted joint has its uniqueness and there is need to determine the optimum tightening for each application through careful experimentation. When a bolt is properly tightened it is stretched such that it operates like a very ridged spring pulling joining surfaces together. The torque which is the rotation of the bolt at some instance results to tension which is equivalent to stretching. There are a variety of factors that influence the amount of tension that normally occurs when a certain amount of tightening torque is applied. The first factor is the diameter of the bolt. For instance, a lot of force is required to tighten a 3/4-10 bolt than a 318-16 bolt since it has a larger in diameter. There is also the factor of the grade of the bolt. In this regard, a lot of force is required to stretch an SAE Grade 8 bolt compared to a SAE Grade 5 bolt since the former has a greater material strength. The third factor is the coefficient of friction or the "nut factor which is an indicator that smoother, harder, and slicker bolting surfaces like bearing surfaces and threads, require less torque to stretch a bolt as opposed to softer, stickier and rougher surfaces [3]. However, there is need to make an evaluation so as to determine the optimum tightening torque since the K factor in this formula is always an estimation. In this regard, the most commonly used bolting K factors include: 0.22 for zinc plated bolts, 0.20 for plain finished bolts, and 0. 0.10 for highly lubricated bolts. In order for the fastener to get a longer length there is material that is donated by the part of the bolt. In this case that material will come from the threads, which are considered to be the weakest points of the bolt. A part of the threaded portion of the bolt wall will experience a reduction of area and will "neck out", leading to creation of a "dog bone" appearance [4]. This change in stress area considerably weakens the bolt hence stret

Preload calculations Complete Bolt stiffness calculations Complete Check on the calculations In progress

			Complete the write up and organize the report In progress
Team Meeting Update	-	-	All team members Abdulla Ghayeb, Ebrahim Hubail, and Leah Liebelt met on Friday and we have updated the team charter roles.
			The team have considered a second thought about the pylon and to purchase carbon fiber pylon from Rockwest composites. Since they already have telescoping system pylons, which would help us cut the weight of our final device and to increase the durability of the pylon.

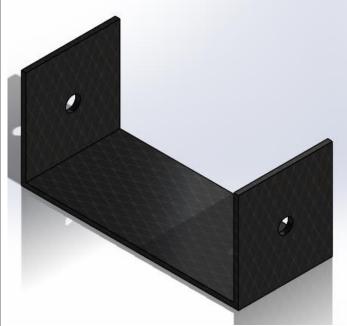
Action Item	Date Due Date Completed	Time Spent on Item	Result/Proof of Completion
----------------	-------------------------	-----------------------------	----------------------------

Epoxy two delaminated sheets of carbon fiber back together and harden again. Apply touch-up epoxy to carbon fiber plate to prevent delamination & help finish final product. [~1 hr]	February 19th	February 18th	1 hr	
Clean up edges of carbon fiber plates using Dremel [~2 hr]	February 19th	February 19th	2 hrs	

Correct calculations for U shaped carbon fiber piece, integrate into the technical analysis report [~1.5 hr]	February 22nd	February 22nd	0.75 hrs	Corborn Fiber Composite Laguar \$1150
Layup U shaped carbon fiber [~2 hr]	February 24th	February 22nd	1.5 hr	

Harden U shaped carbon fiber [~2 hr]	February 25th	February 23rd	3 hrs	
75% of Final Proposal Report Corrections	-	February 24th	1.5 hrs	I had extra time this week to complete part of the Final Proposal Report Corrections. This item was not an action item for last week, but was to be an action item in the future. I went through and completed all report corrections up until chapter 5.2, and inserted comments for other sections that needed to be completed. If you would like proof of completion, I can email a revised copy of the report and the corrections to you.

Team Member	Action Items	Date Due
Abdulla Ghayeb	 Complete Bearing Technical Analysis Organize the Report and complete the write up to submit it by due date. [~4] Update the CAD Package [~3 hr] 	 March 1st March 2nd
	U-shaped Support + DrawingShoulder bolt of bearing + Drawing	
Ebrahim Hubail	 Complete Shoulder Bolt Technical Analysis [~4 hr] Check the calculations. Complete report write up and organizing. 	1. March 1st
	2. Work with Abdulla on updating the CAD Package [~3 hr]	2. March 2nd
	 Lock nut + Drawing 	
	 Velcro Straps + Drawing 	


Leah Liebelt	 Dremel U bar carbon fiber edges [~1 hr] Write up technical analysis report [~4 hr] 	1. February 27th
	3. Finish Final Proposal Rewrite [~1 hr]	1. March 1st
	4. Write section 7 of midpoint report [~2 hr]	2. March 3rd
	, , , ,	3. March 4th

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, March 4th, 2019 5:30pm

The following are the Action Items from last week:

Action Item	Date Due	Date Completed	Result/Proof of Completion
Bearing Technical Analysis Complete and submit Technical Analysis	March 1st	March 1st	Completed Technical Analysis write-up and Organized the formatting and submitted on time. (Document is too large to fit for proof, 14 pages)
CAD Package Update	March 4th	March 3rd	Updates in CAD Package:

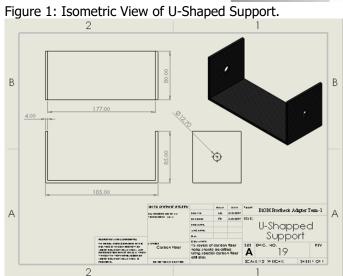


Figure 2: Drawing of U-Shaped Support.

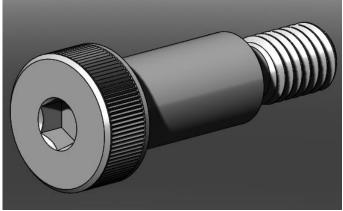
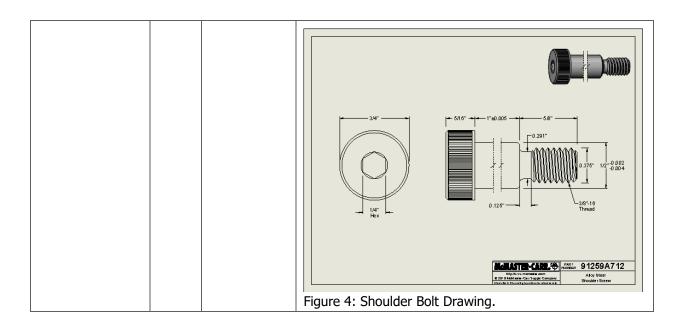
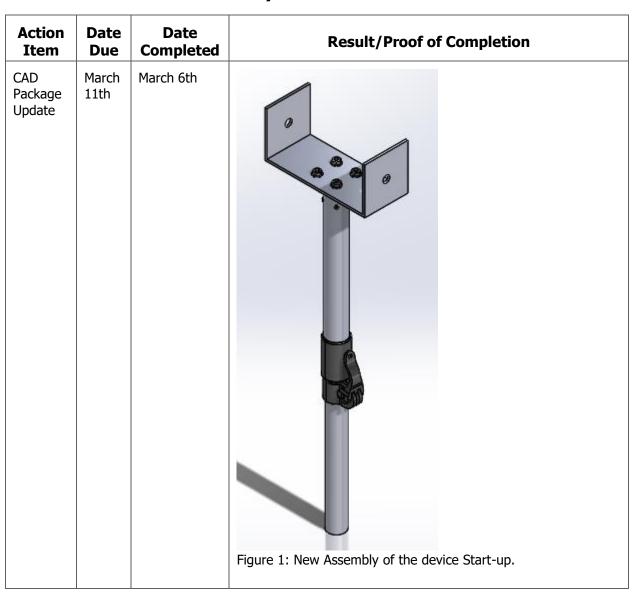



Figure 3: Shoulder Bolt Purchased through mcmaster.

Action Item	Date Due	Date Completed	Result/Proof of Completion
Complete Shoulder Bolt Technical Analysis	March 1st	March 1st	Submitted the file to BBlearn.
CAD Package Update - Velcro Straps + Drawing - Lock nut + Drawing	March 2nd	March 2nd	


Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Dremel U bar carbon fiber edges [~1 hr]	February 27th	February 27th	1.5 hr	
Write up technical analysis report [~4 hr]	March 1st	March 1st	4.5 hr	See Bblearn.
Finish Final Proposal Rewrite [~1 hr]	March 3rd	March 2nd	3 hr	Contact me for proof of complete report revision. Document is too long for proof.
Write section 7 of midpoint report [~2 hr]	March 4th	March 4th	1.5 hr	Contact me for proof of completion. Document is too long for proof.

Team Member	Action Items	Date Due
Abdulla Ghayeb	 Update the CAD Package [~4 hr] L-Shaped Support holes dimensions, Resize and Print on A3 to Leah For punching Holes. Springs determined to be used for motion. Rockwest attachment Rockwest clamp Look for the foot attachment Grabcad. If all parts below the U-Shaped are done Start the new assembly. 	1. March 11th
Ebrahim Hubail	 Drill holes in Thermoplastic cuffs Attach the velcro straps to the cuffs Attach the cuffs to the L shaped carbon fiber 	1. March 9th 2. March 9th 3. March 9th
Leah Liebelt	 Write Abstract for UGRADS submission [0.5 hr] Drill holes in L shaped carbon fiber component [3 hr] Drill holes in U-bar carbon fiber component [2 hr] Review Midterm Report & edit as needed [2 hr] Complete Midterm powerpoint presentation [2h hr] 	1. March 4th 2. March 7th 3. March 7th 4. March 8th 5. March 10th

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, March 11th, 2019 5:30pm

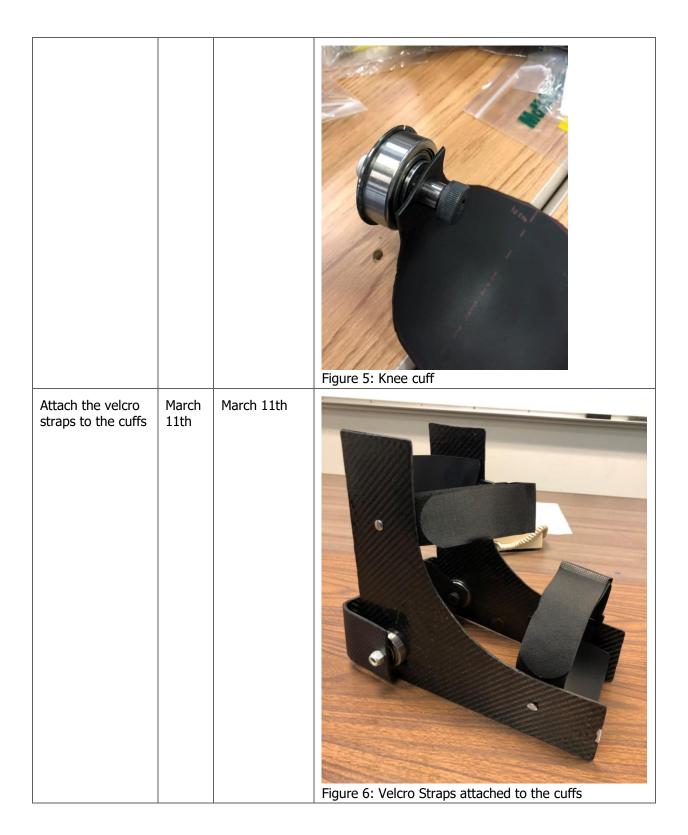
The following are the Action Items from last week:

The start-up of the assembly have included all the parts that we have already from the bottom part of the device. The pylon length have been not determined yet, it should be done after the testing procedure. to secure the mounting plate in place I had to find the right Bolts and Nuts through Mcmaster all links are provided below to be ordered. extra length was required on the screws that should secure Mounting Plate to the pylon with the same pitch "6-32." link is provided below to order 6-32x1/2" screw to ensure that it will hold properly in place. Clamp drawing is requested from manufacturer to be included in the final CAD package.

Note: All parts in the assembly might change through the semester.

Figure 2: Screenshot from previous CAD design.

As shown in Figure 2 the clamp differs from the new one installed as shown in Figure 1. the previous design U-Shaped Support was meant to be welded on the pylon as shown in Figure 2, In the other hand in Figure 1 it shows that it there will be a Mounting Plate connecting the Pylon with the U-Shaped Support, and the reason is because the team have chosen to have the pylon and the U-Shaped Support material as Carbon fiber so it could have more stiffness and as the Carbon is known that it is light weighted. The main change in the pylon is that as Shown in figure 1 that the top tube is larger than the bottom. It have been flipped because it was meant to have the adjustment do not interfere the Springs attached So they could operate normally as needed.


As of this Point Progress of the New CAD Assembly is 20% Completed.

- Tasks:
 - L-Shaped Support holes dimensions, Resize and Print on A3 to Leah For punching Holes.

	(Completed and provided a Screenshot for Leah)
•	Springs determined to be used for motion.
	(Completed, Needs to be added to the Assembly)
•	Rockwest attachment (Completed, STP
	format file had to be converted to SLDPRT part)
	Rockwest clamp (Completed, File was not
	provided on the Website. I have contacted
	the company to send the STP file and it
	have been converted to SLDPT)
•	Look for the foot attachment Grabcad. (Not
	Completed, had to determine all the
	dimensions to be designed on Solidworks.
	The part was not found in Grabcad.)
•	If all parts below the U-Shaped are done Start
	the new assembly. (In Progress, Since most
	of the parts are located and designed the
	assembly have started including the U-
	Shaped Support, Mounting Plate, Pylon
	new clamp, top and bottom tubes for the
	pylon, Screws, Bolts and Nuts to secure all
	parts in place.)
•	Drawings Updated" L-Shaped, U-Shaped,
	Mounting Plate, Bearing, shoulder bolt,
	Thigh cuff, Calf cuff, Small Spring,
	compression Spring for motion, Screws, Bolts and Nuts."
	DUILS AIIU MULS.

Action Item	Date Due	Date Completed	Result/Proof of Completion	
-------------	-------------	-------------------	----------------------------	--

Drill holes in Thermoplastic cuffs	March 9th	March 8th	Figure 4: Calf cuff
------------------------------------	--------------	-----------	---------------------

Attach the cuffs to the L shaped carbon fiber	March 10th	March 10th	
			Figure 7: Upper part of the device assembly

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Write Abstract for UGRADS submission	March 4th	March 3rd	0.5 hr	BIOM Prosthesis Adapter The BIOM Ankle Prosthesis Device is an advanced robotic ankle which allows people with below-the-knee amputees the ability to walk unassisted. An adjustable adapter was needed to test the BIOM Ankle Prosthesis device for research purposes. The adapter was to span from the BIOM Ankle Prosthesis device to the bent knee of an able-bodied person to allow research to be conducted on the ankle prosthesis without the need of an impaired subject. This adapter was to fit different sized users, be lightweight, comfortable, durable, safe, cost effective, and have a quick attachment for the user. Currently, researchers have no way to accurately and quickly test the BIOM device on able-bodied users. If the BIOM device could be tested on able-bodied users, it would shorten the time the BIOM would be under research, and would provide amputees with a more reliable and realistic BIOM device.

Drill holes in L-shaped carbon fiber component	March 7th	March 6th	3 hr	
Drill holes in U-bar carbon fiber component	March 7th	March 6th	1.5 hr	See U-bar above.
Review Midterm Report & edit as needed	March 8th	Not complete		due-date moved back 1 week. Focused on powerpoint presentation in lou of moved due date.
Complete midterm powerpoint presentation	March 10th	March 10th	6 hr	Sold Freethesis Adapter The Color F

Team Member	Action Items	Date Due
Abdulla Ghayeb	 1. CAD Package Update [~5 hr] Complete 80% of the upper Part of the device Assembly Add L-Shaped Support Add Cuffs 	1. March 15th

	 Add bearing Add shoulder bolts Add chicago bolts Add Velcro Strap 		
Ebrahim Hubail	 Cut and form the galvanize plate to shape the new U-shaped attachment. Attach the pylon to the attachment and then to the U-shaped attachment. 	1.	March 13th March
	Shapea attachment.	13th	March
Leah Liebelt	 Complete midterm report [2 hr] Drill holes in carbon fiber U-bar support for attachment 	1.	March 13th
	[2 hr]	2.	March
	Drill holes in carbon fiber upper pylon		12th
		3.	March 12th

TEAM: F18 BiOM Prosthesis Adapter

Due Date:

Monday, March 25th, 2019 5:30pm

The following are the Action Items from last week:

Action Item	Date Due	Date Completed	Result/Proof of Completion
CAD Package Update	March 25th	March 20th	1. CAD Package Update [~5 hr] • Complete 80% of the upper Part of the device Assembly • Add L-Shaped Support (Completed) • Add Cuffs (Completed) • Add bearing (Completed) • Add shoulder bolts (Completed) • Add chicago bolts (Not Completed) • Add Velcro Strap (Not Completed)
			Figure 1: Updated CAD Package. As Shown in figure 1 70% of the upper portion of our device is completed. over all the CAD package is still in progress where it

	is in 75% of completion. all what is left is the chicago bolts, velcro straps, springs, and attachment to the BiOM.
--	---

Action Item	Date Due	Date Completed	Result/Proof of Completion
Cut and form the galvanize plate	25th March	-	Not completed and will be done by the 26th of March.
Attach the pylon to the attachment and then to the U-shaped attachment	25th March	-	Not completed and will be done by the 26th of March.

Team Member: Leah Liebelt

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Complete midterm report	March 13th	March 12th	2 hr	Submitted in BBlearn.
Drill holes in carbon fiber U-bar support for attachment	March 26th			Will be completed by Tuesday 26th of March
Drill holes in carbon fiber upper pylon	March 26th			Will be completed by Tuesday 26th of March

Team Member	Action Items	Date Due
Abdulla Ghayeb	1. CAD Package Update [~2 hr] • Complete 80% of the upper Part of the device Assembly • Add Small springs • Add chicago bolts • Add Velcro Strap 2. Work as a team to assemble as much as we can for hardware review-2. [~3hr]	 April 1th March 26th
Ebrahim Hubail	 Cut and form the galvanize plate to shape the new U-shaped attachment. Attach the pylon to the attachment and then to the U-shaped attachment. 	1. March 26th 2. March 26th
Leah Liebelt	 Drill holes in carbon fiber U-bar support for attachment [2 hr] Drill holes in carbon fiber upper pylon 	1. March 26th 2. March 26th

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, April 1st, 2019 5:30pm

The following are the Action Items from last week:

Action Item	Date Due	Date Completed	Result/Proof of Completion
CAD Package Update			Complete 80% of the upper Part of the device Assembly Add Small springs (Not Completed) Add chicago bolts (Completed) Add Velcro Strap (Completed) Exploded view (Completed) Drawing of exploded view (Completed) The part number of the device of the
			1.2 Colbon fiber top tube 1 2.1 Ushoped corbon 1 berry topon 1 2.1 Ushoped corbon 1 2.2 Ushoped Support 2 2.3 MOUNTING PLATE 1 3.1 HIGHT CUFF 1 3.2 CALF CUFF 1 3.3.1 VELCIO STRAP 2 3.2 WILCIO STRAP 2 3.2 NATE CUFF 1 4 CLAP M 1 5.1.1 BY OULDE BOIT 2 5.1 BY OULDE BOIT 2 5.1 BY OULDE BOIT 2 5.1 ATTACHMENT SOR W 6 5.3.1 ATTACHMENT SOR W 6 5.3.1 ATTACHMENT SOR W 7 5.3.1 ATT
			Figure1: Last Updated CAD package Reaching this point in the CAD package I would say that it is 95%
			Completed knowing that there are some parts that needs to be designed and added to the assembly. despite the small changes that might happen after the testing procedure. because after the testing the sizes of some of the components in the device will probably change based on the results of the testing. Moreover, after adding all the components and having all the assembly

completed the appearance of the device have to be added to give it the carbon fiber look. Figure 2: Bearing Epoxy Leah have done the mixture of the epoxy because she have done it before a lot, and then she handed it to me and I have applied it to the bearings and the support. after that I have clamped them to

Team Member: Ebrahim Hubail

Act	tion Item	Date	Date Completed	Result/Proof of Completion
		Due	Completed	· •

the table with Ebrahims help.

Cut the galvanize plate to shape the new U-shaped attachment	March 26th	March 26th	
--	------------	------------	--

Assembled the upper part of the device for HR2	March 29th	March 29th	
Write down the HR2 summary	March 29th	March 28th	Submitted on BBlearn. Parts that the team has that have not been listed: • Leg support foam for comfortability • Carbon fiber sticker Tasks that need to be completed: • Layup a new carbon fiber U-shaped • Make a new thermoplastic cuffs • Shorten down the velcro straps after doing the testing procedures • Changing the clamp that is between the pylons • Epoxy and cut down the pylon after doing the testing procedures • After having the new cuffs we will apply the foam to the cuffs for comfortability • Apply the carbon fiber sticker to the carbon fiber leg support Parts needed for completion of design: • Springs to range from pylon to calf cuff • Switch the current carbon fiber U-shaped with the new U-shaped. Team members (Abdulla, Ebrahim, Leah) made a meeting to choose the carbon fiber telescoping system. Which is the two carbon fiber pylons and the pylon attachment. Abdulla has been working on epoxing the bearings to the carbon fiber leg supports, and attaching the shoulder bolt to the system. Ebrahim has been working on drilling holes on the cuffs (Building 98C) and attaching the velcro straps. He also worked on attaching the cuffs to the carbon fiber leg supports by using chicago bolts. Leah has been working on drilling holes on the carbon fiber pylon, U-shaped support, and carbon fiber leg supports. She attached the pylon to the attachment and the attachment to the U-shaped support.

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Drill holes in carbon fiber upper pylon	March 26th	March 26th	45 min	
drill holes in carbon fiber U-bar attachment	March 26th	March 26th	45 min	

Attach carbon fiber pylon to U-bar	March 26th	March 27th	30 min	
Layup new carbon fiber U-bar support	March 30th	April 1st	1.5 hr	
Draft the U- grads poster	April 1st	April 5th	2 hr	I had extra time this week so I started drafting the U-grads poster early. Second

Team Member	Action Items	Date	Due
Abdulla Ghayeb	 CAD Package Update [~4 hr] Take measurements of the BiOM attachment whenever you have access to it. Complete 80% of the upper Part of the device Assembly Add Small springs Design the BiOM Attachment Add the BiOM Attachment 	1.	April 8th
Ebrahim Hubail	 Form new thermoplastic cuffs Apply the Spring as a Team 	1. 2.	April 8th April 8th
Leah Liebelt	 Cure carbon fiber U-bar support Draft operators manual for system Drill shoulder bolt holes in U-bar support Drill attachment holes in U-bar support 	1. 2. 3. 4.	April 5th April 5th April 8th April 8th

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, April 8th, 2019 5:30pm

The following are the Action Items from last week:

Action	Date	Date	Result/Proof of Completion
Item	Due	Completed	
CAD Package Update	April 8th	April 5th	Figure 1: BiOM Attachment Since there I couldn't find A Grab CAD file from the website, I have considered DR. Sarah's suggestion to tke measurements off the part and design it by myself to add it in the assembly. Figure 2: BiOM Attachment added to the Assembly

Figure 3: Clamp Update

The plastic clamp was replaced with the Bike clamp since its stainless steel. As the team have decided to go with the Bike clamp because it's stiffer and it will hold better.

Figure 4: Top of Mechanical Hydraulic System

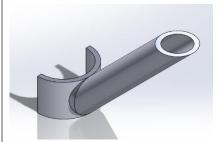


Figure 5: Bottom of Mechanical Hydraulic System

Figure 4 & 5 shows the idea that the team have decided to go with to attach the spring in the device to operate as wanted. A mechanical hydraulic system was designed to be placed under the calf cuff and the top pylon to hold the spring.

Pickup Print out	April 7th	April 7th	Figure 6: Mechanical Hydraulic System The red and blue parts were 3D printed after they were designed in Solidworks. after the print out was picked up, the OD of the Blue part was not fitting in the Red Part. I have sanded down the OD of the Blue part about 1mm. The ID of the pylon fit was slightly off so I had to sand it down with Leah's help and it have fitted successfully.
Cutting Foam	April 8th	April 7th	Figure 7: Cutting Foam I have Cut the foam that is going to be placed in the cuffs with Ebrahim's help. So that it could be easily placed when the full device is assembled and finalized.

Action Item	Date Due	Date Completed	Result/Proof of Completion
Form new thermoplastic cuffs	April 8th	April 5th	
			 Knee cuff was re-made. Calf cuff was replaced with a cuff that we had previously. Thigh cuff was reformed by using the heat gun.

Applying the Spring to the device	April 8th	April 7th	Abdulla and Ebrahim worked on fixing the hydraulic system with the spring and epoxied the hydraulic system to the device.
Sand down the bike clamp	April 8th	April 5th	Abdulla and Ebrahim went to the machine shop 98C and sanded down the clamp so it fits our telescoping pylons. The original clamp size is 34.9 mm, so we sanded it down to 33.9 mm.

Marking holes	April 8th	April 7th	 I marked the holes for the carbon fiber leg supports for a second hole, so that the calf cuff do not move and the hydraulic system do not break. I marked the holes for the galvanize plate support that was attached under the calf cuff.
Shorten Velcro straps and sticking the foam	April 8th	April 8th	Abdulla and Ebrahim worked on sticking the foam to the cuffs. Ebrahim worked on shortening down the Velcro straps, making holes, and fixing them to the device.

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Cure carbon fiber U-bar support	April 5th	April 2nd	3 hr	
Draft operators manual for system	April 5th	April 25th		Ebrahim and Abdulla wrote operators manual due to unforeseen circumstances. I had time to edit and put final touches in the draft.
Cut and Dremel Carbon fiber U-bar	April 8th	April 7th	1 hr	see bblearn for final submission.

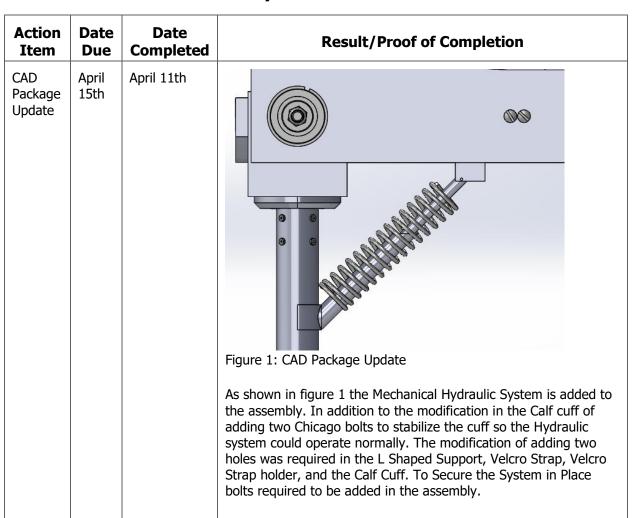
Drill 2 ½" shoulder bolt holes in U- bar support	April 8th	April 7th	0.5 hr	See above photo
Drill 4 attachment holes in U- bar support	April 8th	April 7th	0.5 hr	See above photo
Find a fix for pylon slipping	April 8th	April 5th	2 hr	Encountered issue with the pylon holding more than 60 lbs. Drilled required holes in aluminum pylon as a backup plan if no fix was found for carbon fiber pylon. Carbon fiber pylon was slipping caused by plastic clamp. Ebrahim ordered a new metal bike clamp but it cracked the carbon fiber and would still slip due to varying diameters. I found a fix by wrapping duct tape around the bottom pylon to create a larger diameter so the upper pylon doesn't have to contract much to avoid cracking. It held all the group members weights individually. This is a quick fix until a slightly larger diameter pylon is obtained.

Finalize draft of poster	April 5th	April 4th	1 hr	BIOM Prosthesis Adapter Adada Clayde, Endown Hessin, and Lesh Lobil The College of Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Endown Hessin, and Lesh Lobil The College of Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Endown Hessin, and Lesh Lobil The College of Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, Engineering Information and Applied Sciences, Northern Attorne University, Flagolatif, AZ 85011 Page 18 Adada Clayde, AZ
Drill extra hole in calf cuff and carbon fiber L-shaped support so the calf cuff leg support doesn't move the spring out of place.	April 8th	April 7th	0.5 hr	
Manufacture stiff coating for calf cuff to allow spring mounting.	April 8th	April 7th	1 hr	Included cutting metal to size, drilling 4 holes to connect to support, and bending to shape required to fit over calf cuff

Fix spring mounting	April 8th, 5pm	April 8th	2.5 hr	
				The printed plastic did not fit over pylon, I sanded down plastic until it fit. The hydraulic-like design did not allow any angular movement about the calf cuff, which is required for the two tubes to move relative to each other. Created hinge for calf cuff by cutting off end of blue tube, drilling small hole through blue tube and connecting two plates of metal to outer metal calf cuff and screwing a bolt through the central hole. Cut slot in red plastic and inserted screw in blue plastic to ensure the pipes would not slip out of each other while in use.

Team Member	Action Items	Date Due
Abdulla Ghayeb	 As a team Complete Testing Procedure. CAD Package Update [~4 hr] Device Assembly Add Small springs Add Hydraulic System Add the Compression Spring Update Exploded View. 	1. April 12th 2. April 15th

Ebrahim Hubail	 Apply the carbon fiber sticker on the L-shaped leg supports. Work as a team on completing the testing procedure. 	1. April 15th 2. April 12th
Leah Liebelt	 Implement poster feedback to finalize poster (future work, conclusions, results) Work with team to complete testing procedure 	1. April 15th 2. April 12th


ACTION ITEMS

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, April 15th, 2019 5:30pm

The following are the Action Items from last week:

Team Member: Abdulla Ghayeb

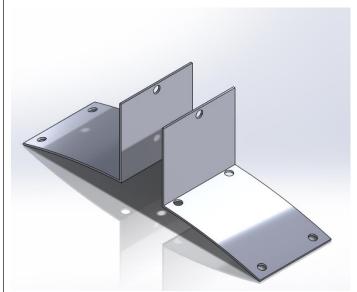


Figure 2: Hydraulic System Mount

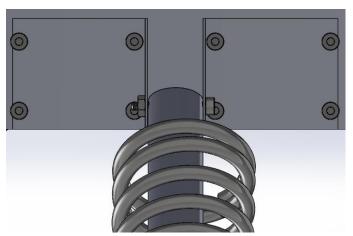


Figure 3: Mount Secured

Figure 2 shows the Mount designed to be manufactured using galvanize steel, and secured in the Galvanize Cuff that is placed under the Calf Cuff using small bolts as shown in Figure 3. this Mount will allow the spring to have free rotation.

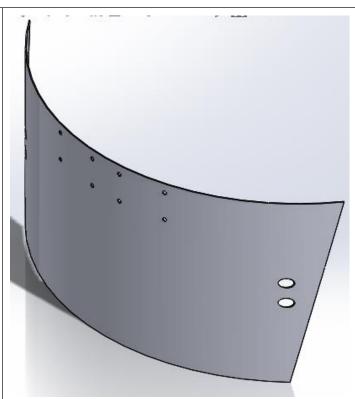


Figure 4: Galvanize Calf Cuff

Figure 3 shows the Galvanize steel that is designed to support the bottom part of the Calf Cuff to attach the mount, so that it reduce the irritation caused by the spring when compressing.

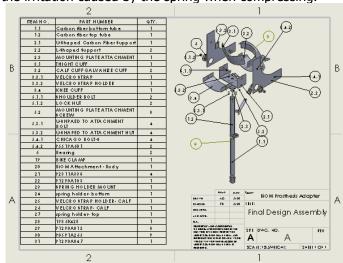


Figure 5: Exploded View Update

Due to added new components to the assembly there was a disorientation in the exploded view of the device. I have reoriented the exploded view. in the other hand renumbering the BOM list have to be edited for upcoming CAD update, as well as

	renaming the new parts added to make it easier to read the components. Note: I was Trying to figure out how to add the Small Springs in to the System Assembly for one hour. Although, there was a continuous error occurring. There is no mates that could hold them professionally in place other than locking them. This task will be moved to next week Action Items due to complication.
--	--

Team Member: Ebrahim Hubail

Action Item	Date Due	Date Completed	Result/Proof of Completion
Apply the carbon fiber sticker on the L-shaped leg supports	April 15th	April 11th	

Team Member: Leah Liebelt

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
-------------	-------------	-------------------	-----------------------------	----------------------------

Implement poster feedback to finalize poster (future work, conclusions, results)	April 15th	April 15th	2 hr	BIOM Prosthesis Adapter Compared to the property of the prope
Work with team to complete testing procedure	April 12th	April 13th	6 hr	The team worked together to complete testing April 11th and 12th. Abdulla and Ebrahim wrote the Final product testing proof document. Leah outlined and edited the document. For proof see bblearn for final submission.

The following are the Action Items for next week:

The following are	The following are the Action Items for hext week.				
Team Member	Action Items	Date Due			
Abdulla Ghayeb	1. Update Team Website Update Gallery Update Documents Section 2. CAD Package Update Drawings Update Exploded View. (Edit drawing BOM) Hydraulic System Parts Calf Cuff Galvanize Sheet Update Modified Parts BiOM Attachment Device Assembly Add Small springs (Try to Fix Error) Resize Top and Bottom Pylon Based on Current Measurements Add Appearance to the device When Assembly is completed Update Knee Support dimensions	1. April 22th 2. April 22th			
Ebrahim Hubail	1. Finalize Operations Manual	1. April 22th			

Leah Liebelt	 Brainstorm new solutions for spring system Implement new design for spring system 	1. April 16th
	3. PRINT POSTER	2. April 22th
		3. April 19th

ACTION ITEMS

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, April 22th, 2019 5:30pm

The following are the Action Items from last week:

Team Member: Abdulla Ghayeb

Actio n Item	Dat e Due	Date Complete d	Result/Proof of Completion
CAD Packag e Update	April 15th	April 11th	
			Figure 1: CAD Package Update

Figure 1 Shows the compleason of the CAD assembly as all parts have been added to the assembly using the right mates. Pylon and knee dimensions have been adjusted to match the actual manufactured device. Small Springs and Spring Mechanism have been added to the assembly. Finally, I have added an appearance to the final assembly.

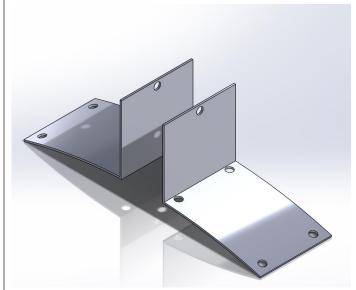


Figure 2: Previous Spring Mechanism Mount to Cuff

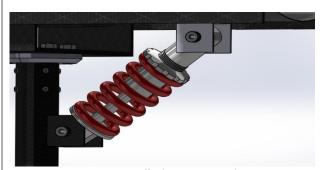


Figure 3: Current Installed Spring Mechanism Mount

Figure 3: Mount Secured

Figure 3 shows the Mount designed to be manufactured using Stainless Steel, and secured in the Galvanized Steel Cuff that is placed under the Calf Cuff using two small bolts to the cuff and one Shoulder bolt to secure the Spring Mechanism in place allowing free rotation.

Figure 3 shows the Galvanize steel that is designed to support the bottom part of the Calf Cuff to attach the mount, so that it reduce the irritation caused by the spring when compressing.

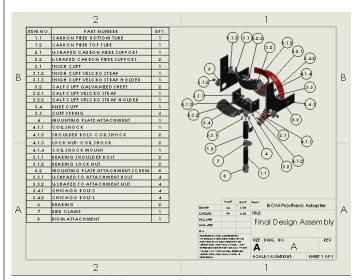


Figure 5: Exploded View Updated

The Exploded View Needed to be Updated do to components added and removed from the assembly. Parts numbering have been edited. Finally, there is no more editing should be further in this drawing.

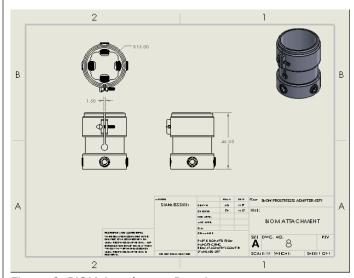
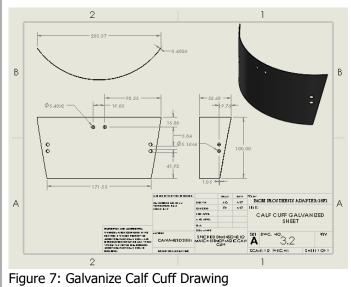
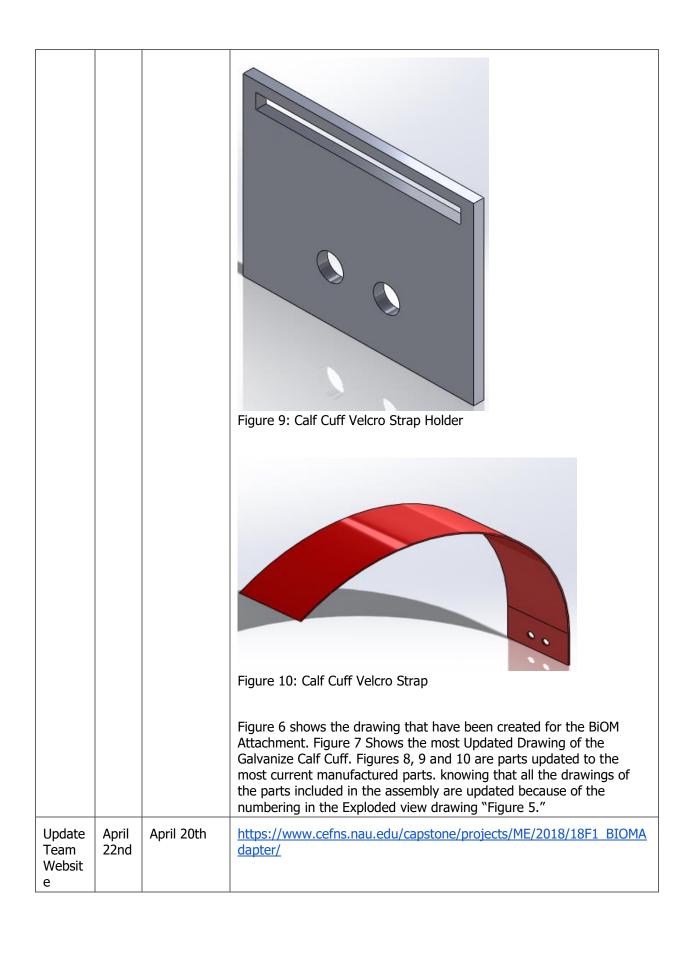
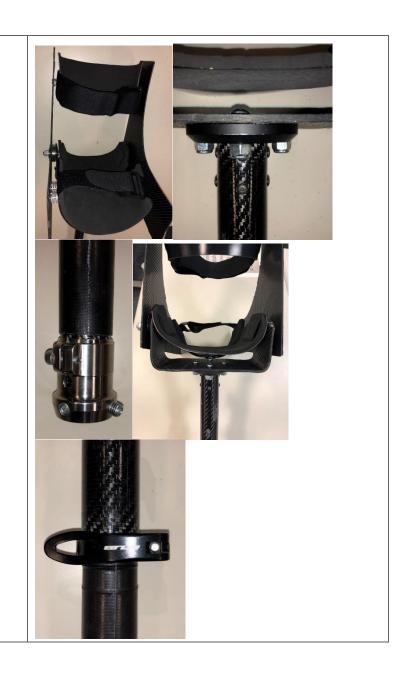


Figure 6: BiOM Attachment Drawing

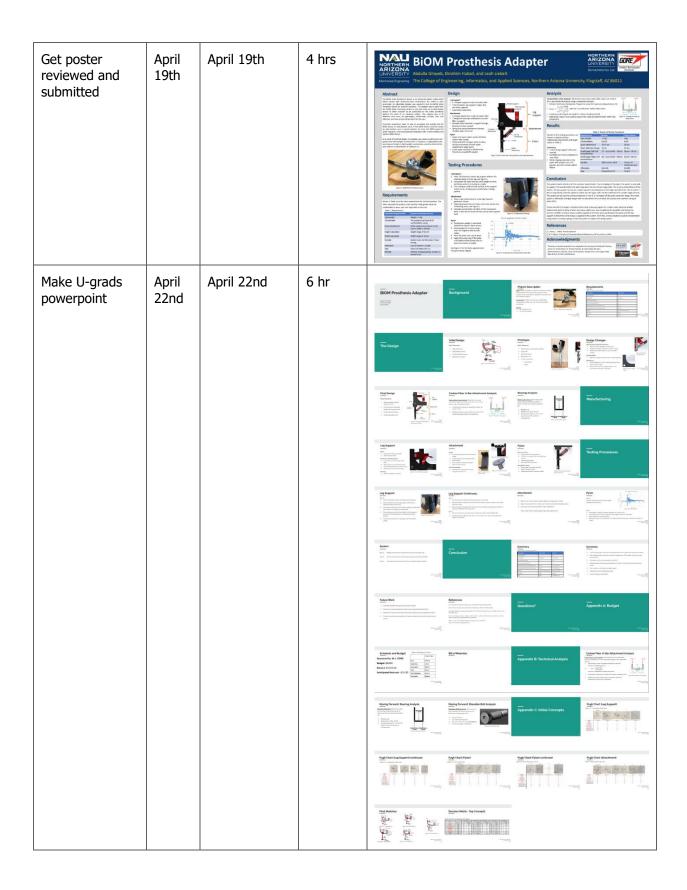




Figure 8: Knee Cuff Modified

	Link above to access the team website, all documentations have been updated. Due to the large amount of pictures have to be added to the Gallery, pictures have been downloaded in my PC and have to be organized to make it easier to upload in the right category in the
	website.

Team Member: Ebrahim Hubail

Action Item	Date Due	Date Completed	Result/Proof of Completion
Operations Manual	April 22nd	April 19th	Updated the pictures of the Operations Manual draft to a solid background pictures.



Machined Parts in 98C	April 22nd	April 19th	Abdulla and Ebrahim Machined this part in the Machine shop 98C. This part is to hold the spring. Abdulla and Ebrahim Machined this part in the Machine shop 98C. Leah sanded down the corners. Ebrahim attached it to the device.
Cut down the Spring and fix it to the device	April 22nd	April 22nd	

			Cutted down the spring to the right size and attached it to the device.
Outlined and added the pictures to the U-grads powerpoint	April 22nd	April 21nd	Abdulla and Ebrahim outlined the powerpoint and added all the pictures.

Team Member: Leah Liebelt

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Implement new design for spring system (carbon fiber brackets)	April 22nd	April 20th	1.5 hr	

The following are the Action Items for next week:

Team Member	Action Items	Date Due		
Abdulla Ghayeb	 Update Team Website Update Gallery CAD Package Update Final check on CAD 	 April 29th April 29th 		
Ebrahim Hubail	1. Finalize Operations Manual	1. April 26th		
Leah Liebelt	1. Update Final Report	1. May 3rd		

ACTION ITEMS

TEAM: F18 BiOM Prosthesis Adapter

Due Date: Monday, April 29th, 2019 5:30pm

The following are the Action Items from last week:

Team Member: Abdulla Ghayeb

Action Item	Dat e Due	Date Complet ed	Result/Proof of Completion
Presentati on	April 26th	April 25th	I have practiced my part in the presentation over and over until I have known that I will do my best in the presentation.
Website Update	April 29th	April 28th	https://www.cefns.nau.edu/capstone/projects/ME/2018/18F1_BIO MAdapter/
			Pictures Update: I have updated the pictures of the final product and uploaded pictures of the team working on the device.
			Document Update: I have uploaded the final Presentation in the website.
CAD Package Update	April 29th	April 23rd	Checked on all parts that matches the BOM in the exploded View drawing. made sure that all the drawings are there. there was 3 drawings missing the location of the parts so I have fixed the reference to the part of each drawing. the CAD package up to this point is completed.

Team Member: Ebrahim Hubail

Action Item	Date Due	Date Completed	Result/Proof of Completion
-------------	-------------	-------------------	----------------------------

Finalize Operations Manual	April 26th	April 25th	 Updated the Table of Content. Added Maintenance section. Updated all of the figures with the final design. See BBlearn for Final submission.				
Updated the Final Bill of Materials	April 29th	April 25th	BOM UPDATED 1 1	E v 1 v 1 v 1 v 1 v 0 v 0 0 0 0 0 0 0 0 0			
			41 Viring Gloves McMaster-Carr Zinc-Galantized Linu-Carbon Steel Sheet 2 Zinc-Galantized Sheet 2 Zinc-	\$19.17 \$19.17			
			Amazon 304.8 x 1524 mm 4D Carbon Fiber Black Provides rice 1 43 Carbon Fiber Sticker Film Amazon Winyl Vehicle Winspiring Societ Film appearance	\$8.52 \$8.52			
			McMaster-Carr 202 Stainless Steel Corrosion-Resistant Allows the pylon to 1 Compression Spring S'100, 2837-00, 0.857-10 move forward 5 **Tong, 0.837-00, 0.857-10 move forward 5 **Tong, 0.837-00, 0.857-10 move forward 5	\$3.25 \$3.25			
			45 Compression Spring McMaster-Carr Compression Spring Allows the pylon to 1 6" Long, 0.875" OD, 0.635" ID move forward	\$12.99 \$12.99			
			McMarter-Carr 302 Stainless Steel Corosion-Resistant Allows the pylon to 10 Compression Spring S'toe, 0.75 '0, 0.54" ID move forward	\$11.63 \$11.63			
1			47 Etestic Bend Amazon Resistance Loop Exercise Bands 1	\$10.95 \$10.95			
			48 Torque sensor Transducer TRT-500 / 500 in-lts Future work 1	\$675.00 \$675.00			
			McMaster-Carr 5051 Aluminum Sheet To Form the Carbon 1 Aluminum Sheet 2,032 mm Thick, 304.8 x 304.8 mm Fiber	\$18.36 \$18.36			
			50	Total \$1,441.92			
			51	Tax & Shipping \$492.92			
			53	Sub Total \$1,934.84			

Team Member: Leah Liebelt

Action Item	Date Due	Date Completed	Time Spent on Item	Result/Proof of Completion
Implement presentation comments from amy	April 26th	April 24th	3 hr	BOM Prosthetis Adapter Buckground Buckgr
Trom umy				The Design Section Control Co
				Professor The State of the Control
				Valuationary Va
				Testing Procedures Image: Continue Image: C
				Para
				Serger Serger
				Obsertioned A Budget Bu

trim bracket and attach to cuff	April 26th	April 22nd	1 hr	with Ebrahim and Abdulla
Update Final Report	in progress	may 3rd	-	in progress

The following are the Action Items for next week:

Team Member	Action Items	Date Due
Abdulla Ghayeb	 Update Team Website Update Documents Upload all the documents that have been submitted. Update the Action Items and Reports. Update Gallery Remove the old CAD Package and update the website with the most current ones. 	1. May 3rd
Ebrahim Hubail	Create the Final CAD pdf file for submission	1. May 3rd
Leah Liebelt	1. Finalize Final Report	1. May 3rd