SAE Baja

Problem Definition and Project Plan

Fahad Alajmi, Sean Collins, Peng Li, Auston Solway, Maximillian Whipple, Jingyuan Zhang

9/23/2015

Overview

- Introduction
- Problem Definition
- Objectives
- Constraints
- Quality Function Deployment
- Project Plan
- State of the Arts
- Conclusion

Introduction

Current Baja in Fabrication shop

- Client: SAE club and Dr. John Tester
- **Background**: NAU's SAE club, advised by Dr. Tester, has a Baja vehicle but it is not working.

Problem Definition

Need Statement

-NAU's SAE club, advised by Dr. Tester, does not have an operational Baja vehicle for the SAE competition.

Goal Statement

- To win
- Build an operational Baja vehicle
- As a learning opportunity
- Inspire teamwork related to engineering design and practices

Objectives

Objectives	Measurement
Light Weight	lb.
High Traction	lb.
Quick Acceleration	ft./s^2
Safe	ksi/ksi
Endurance	Testing hours
Ergonomic Cockpit	ft

Constraints

- Fully operational by March 1st, 2016
- Verify the frame is less than 2 years old
- Must have at minimum 2 forward gears and 1 reverse gear
- Cannot exceed 108" in length or 64" in width
- Weigh between 400 and 800 lb.
- Must use a 10 hp Briggs and Stratton engine

Quality Function Deployment

Engineering Requirements	llus	t	c		ess	ety		ngth	5	SSS		Angle	Legend																			
	Modulus	Neigh	nissio	lsion	Thickness	of Safety	Cost	Exhaust Pipe Length	Powe	tiffne	tiffne	tiffn€	tiffne	tiffne	tiffn∈	tiffne	tiffn€	ring	ring Stiffness	ocity	ocity	city	city	city	city	ه Vel	city	ocity	ocity	Steer	Strong Relationship	9
	Young's I	Body Weight	Transmission	Dimensions	rame T	actor of	Total	ust Pi	ust Pi	ust Pi	ngine	Engine Power	ngine	ngin(ngine	ust P ngine	Jgine			ring	ring	ring	ngine ring	ngine ring	ring			Moderate Relationship	3			
Customer Requirements	λοι	ш			Fra	Fa		Exha	ш	Spi			Maximum	Weak Relationship	1																	
Follow the 2016 SAE Baja Rules		9	9	9				9	9																							
Safety	9				9	9						9																				
Inexpensive	9	9		9	9		9			9																						
Aesthetic				3	3			1																								
Maneuverability	9	9	9	1	1				9	9	9	9																				
Ergonomic Cockpit				3																												
Traction		9	9	9					9			9																				
Robust	9			3	9		3			9	9	9																				
Endurance	9	9			9	9	1			3		9																				

House of Quality

Young's Modulus												
Body Weight		\searrow		_								
Transmission		-			Posit	tive Correla	ation	+				
Dimensions		+			Nega	tive Correl	ation	-				
Frame Thickness	-	+		+								
Factor of Safety	+	+			+		_		Maximiz	ze		1
Total Cost	+	+		+				_	Target			٥
Exhaust Pipe Length				+					Minimiz	e		\downarrow
Engine Power							+		\square			
Spring Stiffness						+	+			\geq		
Velocity												
Maximum Steer Angle		-	+						+			
Engineering Requirements	sninboM s'gnuoY	Body Weight	Transmission	Dimensions	Frame Thickness	Factor of Safety	Total Cost	Exhaust Pipe Length	Engine Power	Spring Stiffness	Velocity	Maximum Steer Angle
Column#	1	2	3	4	5	6	7	8	9	10	11	12
Direction of improvements	↑	٥	↑	٥	٥	1	\downarrow		٥	1	↑	↑

Project Plan

Gantt Chart

Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Communicate With Client															
Defining Project ,Need, Goal, Objective, and Constraints															
Preparing Quality Function Deployment:															
State Of the Art Research															
Verify The Date of Frame															
Creating Function Diagram															
Conceptualizing Alternative Approach:															
Register with SAE															
Engineering Analysis for Current Baja															
Decision Matrices															
Brainstorming for the transmission															
Concept Selection:															
Budget Analysis															
Engineering Analysis for Improved Baja															
Fabrcating Concept Protopyte:															
Order The Engine and Other Necessary Materials															
Testing Concept Prototype:															
Finalizing The Project:															
Problem Definition and Project Planning				\blacklozenge											
Concept Generation and Selection								\blacklozenge							
Concept Prototype												\blacklozenge			
Project Proposal															\blacklozenge

State of the Arts: Transmission

- Centrifugal Clutch: Single gear ratio
- Continuously Variable Transmission (CVT): Multiple gear ratios, controlled by pulley system
- Sequential Transmissions: Used in motorcycle designs, multiple gear ratios

Conclusion

- Problem definition: NAU's SAE club, advised by Dr. Tester, does not have an operational Baja vehicle for the SAE competition to win.
- Objectives: Light weight, has high traction, quick acceleration, safe, able to endure the race, and ergonomic cockpit
- Constraints: Operational March 1st 2016, frame is less than 2 years old, 2 forward gears and reverse, below 108" in length and below 64" in width, use 10 hp Briggs and Stratton engine
- Quality Function Deployment: Customer and engineering requirements
- Project Plan: Fall 2015 SAE Baja schedule
- State of the Arts: Sequential gear box

Reference

- Erickson, Wallace D. *Belt Selection and Application for Engineers*. New York: M. Dekker, 1987.
- Naunheimer, Harald. Automotive Transmissions Fundamentals, Selection, Design and Application. 2nd ed. Berlin: Springer, 2011.
- Panchal, D. Two and three wheeler technology. New Delhi: Asoke K. Ghosh, 2015.