Helium Micro Air Vehicle (MAV)

Fawaz Alenezi, Hamoud Alkhaldi, Abdulrahman Almuqhawi, Matthew Kohr, Conrad Nazario and Randal Spencer

March 8, 2016

Overview

- Introduction
- Objectives
- Testing Setup
- Blimp Testing
- Dimensions CAD
- Propellers
- Motors and Servos
- Enclosure Designs CAD
- Steering System

- Attachments
- Camera Setup
- Quadrino and Radio Transmitters
- Receiver
- Electric Speed Controller (ESC)
- Possible Electronic Setup
- Bill of Materials
- What to do next
- Conclusion

Introduction

- Dr. Srinivas Kosaraju requested a Helium Micro Air Vehical (MAV) device to fly over fires and contaminated areas
- Constraints include that the budget is \$2000, remote control guidance system, reach a minimum height of 31 m
- Comparable advantage to commercial designs
- Our objectives include are to optimize weight payload limit, minimize the response time, double the distance of quadcopters and is durable

Objectives

Table 1: Objectives, measurements, and types units

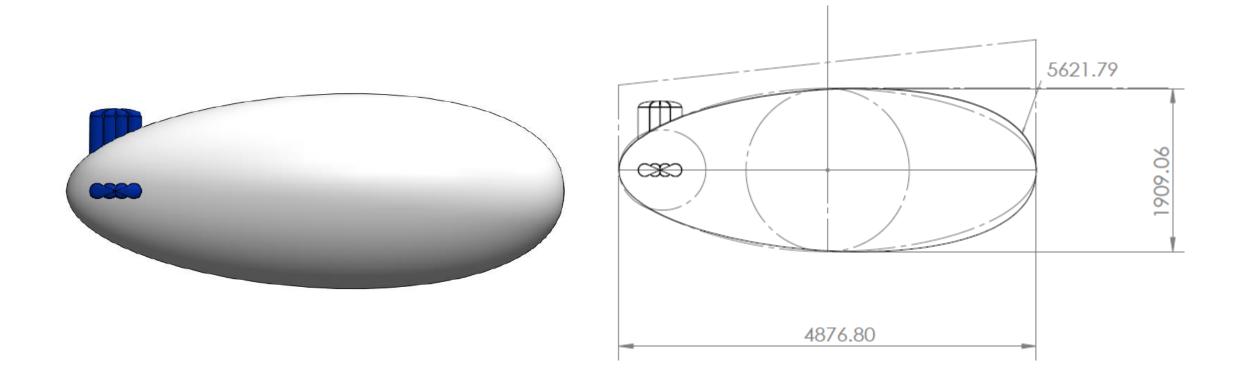
Objective	Measurement	Units		
Limit Weight/Payload	Mass	kg		
Optimize Response Time	Time	Seconds		
Minimize Cost	Currency	\$		
Double distance of standard quadcopters	Length	m		
Durable	Time	Seconds		
Easy to Store	Volume	m ³		

Testing Procedure

- Installed the Helium tank against the back wall.
- Connected the regulator and the hose.
- Attached the hose to the back entrance of the blimp.
- Used all 217 ft³ of helium.
- Attached enclosure to the bottom of the blimp.
- Added weights in increments.
- Measured dimensions of the blimp.

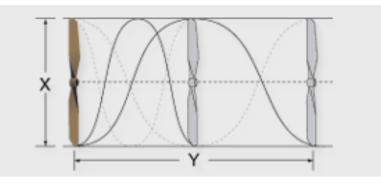
Blimp Testing

Length: 4.88 m


Front Blimp Diameter : 0.87 m

Back Blimp Diameter : 0.94 m

Middle Blimp Diameter : 1.91 m


Carry : 3.11 Kg

Dimensions - CAD

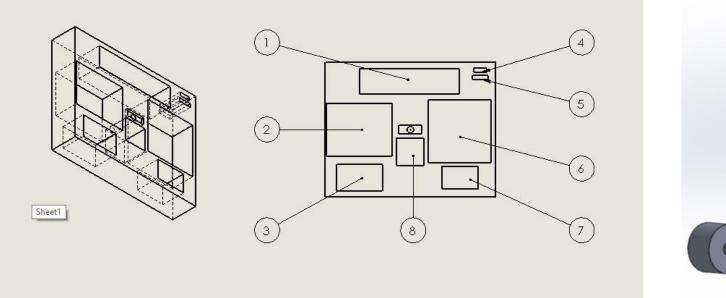
Propellers

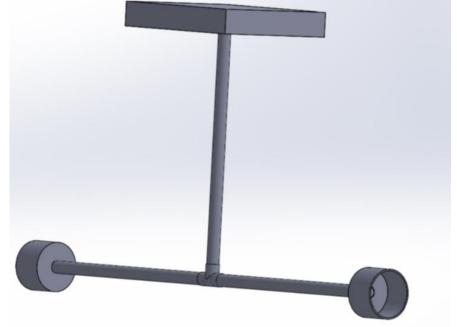
- High thrust is needed to counter the Helium lift force
- Large diameter Propeller with a low pitch is required to maximize the thrust
- Using Dynam Carbon Fiber Propellers

Diameter:30 in.

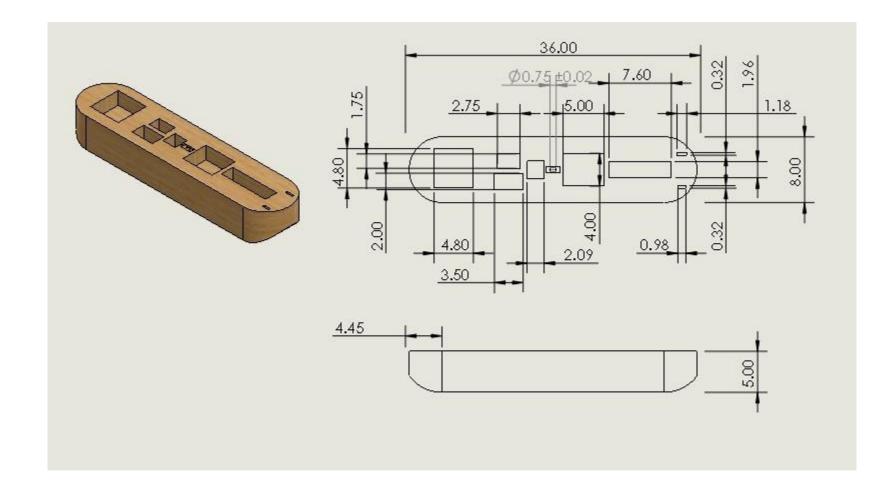
Motors and Battery

- Motor with a low KV provides optimal thrust
- Using LDPOWER M4114-320KV Brushless Motor (CW)
 - 999W
 - 320KV
 - 14.8V-22.2V (4S-6S)
 - 4S Thrust:3.19kg / 6S Thrust:6.28kg
- Battery with 6S has been chosen to maximize the thrust
- Using Turnigy nano-tech 8000mAh 6S(22.2V)

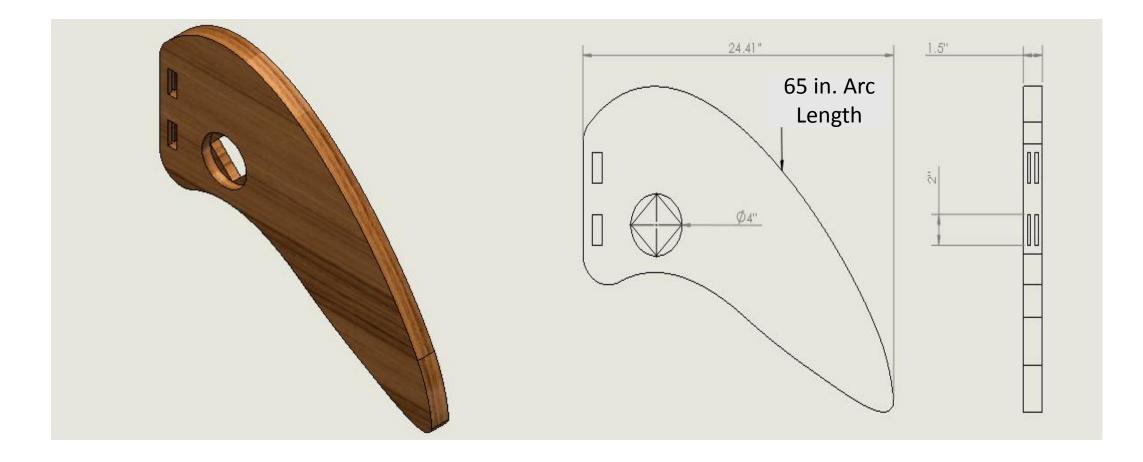


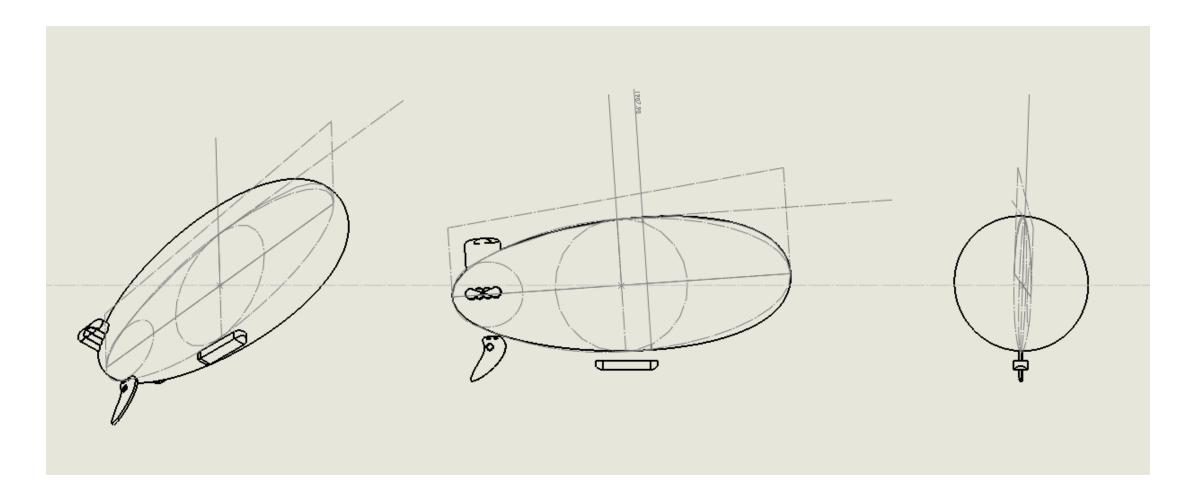

Servos

- Lightweight servo with high torque
- Using Turnigy™ TGY-20C
- 40 kg/cm of torque
- 78 g



Enclosure Designs - CAD




Final Enclosure

Steering

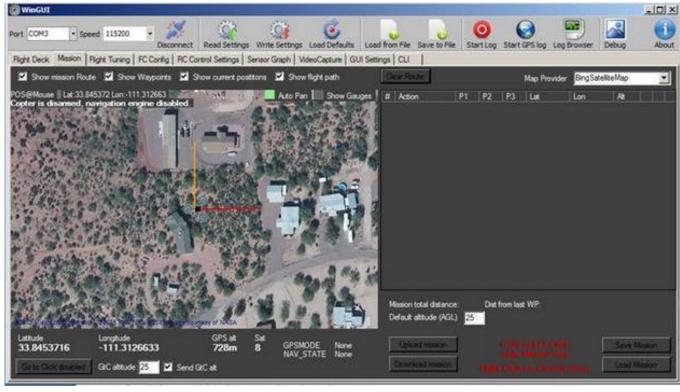
Attachments

Camera Setup

- Using LYNX compatible USB camera
- Raspberry pi 2 with micro USB and SD card
- Delay and range functions
- Automatic Startup when Power is applied

Source: Spencer

Quadrino and Radio Transmitters

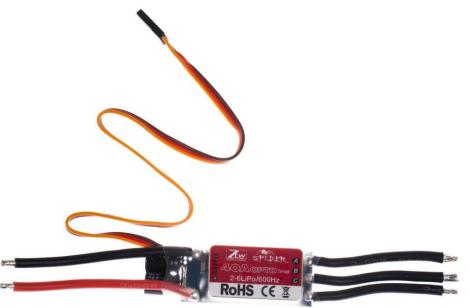

- Flight Controller
- In flight communication
- GPS
- Telemetry data

Source: Spencer

Quadrino cont..

Source: Spencer

Source: Spencer


Receiver

- Flysky 6 channel Receiver
- Communicates with CT6B Transmitter
- Powered by the Quadrino
- Transmitter needs to be recalibrated

Electronic Speed Controller (ESC)


- Connection point between battery and signal output for motors
- ESC will directly connect with Quadrino
- 40 amps

amazon.com

Possible Electronic Setup

- Using a PCB board
- Soldering wires directly to PCB board allows for one power supply
- Use headers to connect to motors
- Split off signal wires to go to Quadrino or receiver directly

Bill of Materials

Table 2: Bill of Materials for enclosure parts

Name		Total (\$)Cost	Dimensions(mm)
Dynam Carbon Fiber Propellers		72.10	762x139.7
lynxmotion quadrino nano		149.99	53x53x17
Fly-Sky 2.4G 6-Channel Receiver (R6B) for CT6B 6-CH TX		11.24	30x25x8
Lynxmotion Quadrino Nano Advanced Wiring Kit		9.99	
3DR 915MHz Radio Set for UAV		100	26.7x55.5x13.3
Raspberry Pi 2		42	127x101.6x76.2
Usb camera		45	38 x 38
micro SD card	8.05	8.05	
Portable Battery		14.99	88.9x50.8x6.35
mini Usb Flash Drive 64 gb		15.99	
2 X Brushless Motor		\$113.80	47x37.8
2 X Turnigy Servo 180 degree		128.96	40.5x21x42
Repair	100	100	
Turnigy Battery		99.99	195x50x55
	Total	912.10	

What to do next

- Set up a efficient and effective power system
- Connect the Quadrino and the receiver to the full system
- Test the system without final enclosure
- Make the final enclosure
- Test the blimp tethered and untethered

Conclusion

- The Helium MAV device to fly over fires and contaminated areas
- Constraints include that the budget is \$2000, remote control guidance system, reach a minimum height of 31 m
- The propellers have a high thrust is needed to counter the buoyancy force.
- Lightweight servo with high torque using Turnigy[™] TGY-20C
- The Quadrino Flight Controller has In flight communication GPS Telemetry data
- At the end the blimp will be tested for multiple runs as well as the enclosure testing.

References

- [1] <u>http://flitetest.com/articles/propeller-static-dynamic-thrust-calculation</u>
- [2] <u>http://kb.sandisk.com/app/answers/detail/a_id/69/~/number-of-pictures-that-can-be-stored-on-a-memory-device</u>
- [3] http://www.lynxmotion.com/p-1020-lynxmotion-quadrino-nano-flightcontroller-with-gps.aspx
- [[5]:http://www.aliexpress.com/store/product/Wholesale-Outdoor-tacticalnylon-ribbon-hooks-The-fan-belts-mountaineering-buckle-the-molle-hook-andequipment/1478383_32465660697.html