Helium Micro Air Vehicle (MAV)

Problem Definition and Project Plan

Fawaz Alenezi, Hamoud Alkhaldi, Abdulrahman Almuqhawi, Matthew Kohr, Conrad Nazario and Randal Spencer

September 21, 2015

Overview

- Introduction
- Goal Statement
- Objectives
- Constraints
- State of the Art Research
- Project Management
 - Quality Functional Deployment
 - Project Plan
- Conclusions

Introduction

- Client is Dr. Srinivas Kosaraju
- Generate a product that can compete with other commercial products
- The ability to generate a product by March 15, 2016

Goal Statement

 The goal is to develop a Micro Air Vehicle that can ascend, descend, and survey areas more efficiently then drone and quadcopters while using helium as its main source of lift.

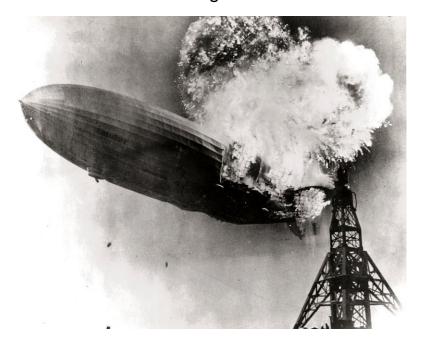
• Our team goal is also to limit energy consumption so that the Helium MAV will last longer and stay operational longer then other MAV's.

Objectives

Objective	Measurement	Units
Limit Weight/Payload	Mass	kg
Optimize Response Time	Time	Seconds
Minimize Cost	Currency	\$
Double distance of standard quadcopters	Length	m
Durable	Time	Seconds
Easy to Store	Volume	m ³

Constraints

- Max size $1.8 \times 0.91 \times 0.91 m^3$
- Reach a minimum height of 30.5 m
- \$2000 budget
- Must have mounted cameras with a live feed
- Remote controlled guidance system
- Temperature and weather sensors
- Must move forward, backwards, ascend and descend and hover at a specified altitude


Helium vs Hydrogen Hindenburg Disaster

Advantages

- Inert gas and is nonflammable
- 7 times lighter than air
- Lifts around 0.96 kg/m³
- Hydrogen (H₂) is highly flammable

Disadvantages

- More expensive than hydrogen
- Weighs twice as much as hydrogen
- Hydrogen can lift about 8-11% more

Source: Wikipedia.org

State of the Art Research (SOTA)

Airlander 1

Source: <u>.hybridairvehicles.com</u>

- Altitude 6096 m
- Payload capacity of 10,000 kg
- 5 days of flight time

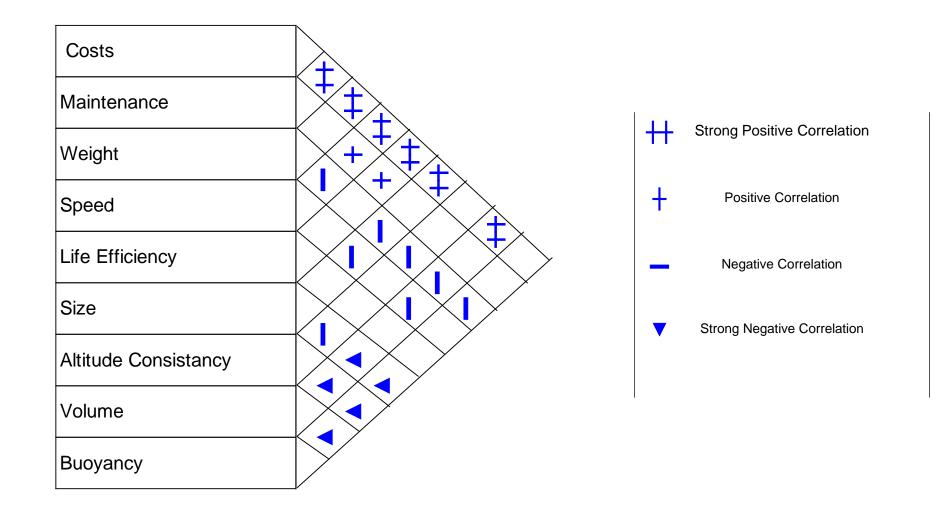
Source: festo.com

- 1 m³= 1 kg buoyant force
- Length 3.7 m
- Aluminium-Metallised Foil, 22 g/m
- Li-Polymer battery, 2000 mAh, 4.2 V
- Ultrasound Receiver Capsules

SOTA Continued

Source: gopro.com

- \$399.99 USD
- Estimated time usage:1hr 35mins
- Weight 74 g
- 4K HD
- 12 Megapixel Sensor
- Night Vision / Waterproof


Source: http://www.dji.com/products/

- Phantom 3 Quadcopter
- \$1290.00 USD
- Flight time: 30 mins (max charge)
- Weight 1280 g
- Max Flight Speed: 16 m/s

Quality Functional Deployment

 ○ ▲ 	Legend Strong Relationship 9 Moderate Relationship 3 Weak Relationship 1 Demanded Quality (a.k.a. "Costumer Requirements")	Costs	Maintenance	Weight	Speed	Life Efficiency	Size	Altitude Consistency	Volume	Buoyancy
	Effectiveness of flight	0		Θ	Θ		Θ	0	0	Θ
	Durability	Θ	0			Θ	0			
	Storage	0		0			Θ		Θ	
	Distance	0		Θ	Θ		Θ	0	0	0
	Manufacture	Θ				0	0		0	0
	Camera	Θ		0			0		0	Θ
	Maintenance	0	0				0			
	Cost	Θ	Θ	Θ	Θ	Θ	Θ		Θ	Θ
	User friendly	0	0							
	Shelf parts	Θ	0	0	0	Θ	0		0	0
	Weather Sensors	Θ	Θ	Θ		0	0		0	0

House of Quality

Project Plan

Task	Weeks														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Communicate With Client													·		
Defining Project ,Need, Goal, Objective and Constraints														shed mil	estone nilestone
Preparing Quality Function Deployment:															mestorie
State Of the Art Research															
Creating Function Diagram:				_											
Conceptualizing Alternative Approach															
Applying Decision Matrices			p												
Concept Selection							_								
Engineering Analysis				13					-						
Material Selection													**		
Fabricating Concept Prototype						13									_
Testing Concept Prototype								8			8				
Preparing Budget Analysis															
Finalizing The Project															

Problem Definition and Project Planning								
Concept Generation and Selection				\diamond				
Concept Prototype								
Project Proposal								

Conclusion

- Client Dr. Srinivas Kosaraju needs a way to capture images above known areas of contamination
- Our mission statement is to optimize the operation and endurance potential of the aircraft while minimizing response time using inert gas Helium
- Objectives including minimizing cost, optimizing communication and flight duration will determine many aspects of production
- Cost must be under budget of \$2000

References

1) Festo AG &Co. *AirPenguin*. Osfildem, Germany 73760. http://www.festo.com/rep/en_corp/assets/pdf/airpenguin_en.pdf

2) Hybrid Air Vehicles. *Airlander*. Bedford, UK MK42 OTG. http://www.hybridairvehicles.com/downloads/Airlander-21.pdf

3) Trancossi, Michele Trancossi, Mauro Madonia, and Antonio Dumas. *HYDROGEN AIRSHIPS: A NECESSARY RETURN BECAUSE OF HIGH COSTSOFHELIUM*. Tech. no. 10.4271/2012-01-1512. Academia, 9 Nov. 2012. Web. 25 Sept. 2015

4) Go-Pro inc. *Hero 4*. Copyright United States. <u>http://shop.gopro.com/cameras/hero/CHDHA-</u> 301.html?skipredirect&gclid=CP2c8ciugcgCFUdffgodwr8P3Q

5) Brain, Marshall. "How Helium Balloons Work" 01 April 2000, HowStuffWorks.com. http://science.howstuffworks.com/helium.htm 18 September 2015