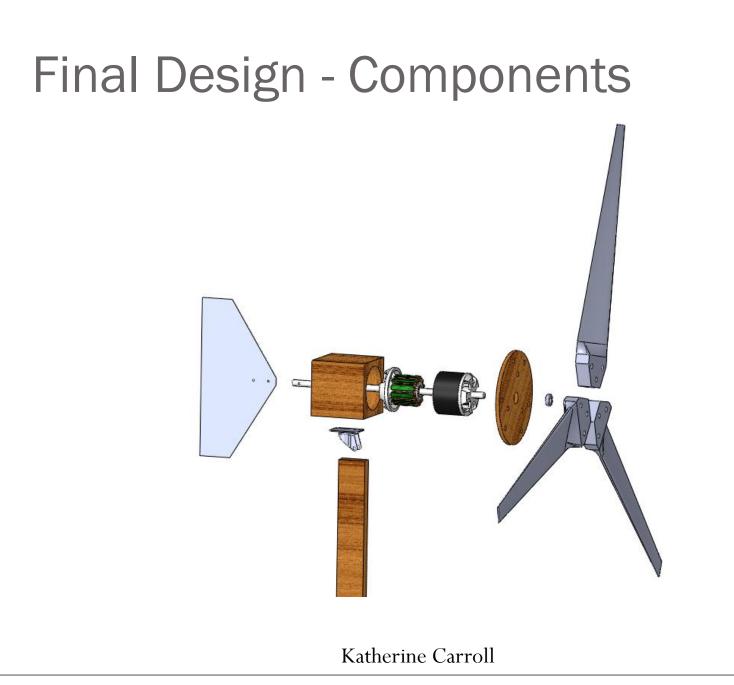
HARNESSING WIND ENERGY FROM RECYCLED MATERIALS

Design Progress Report

Team 3 Katherine Carroll Margo Dufek Andrew McCarthy Leanne Willey

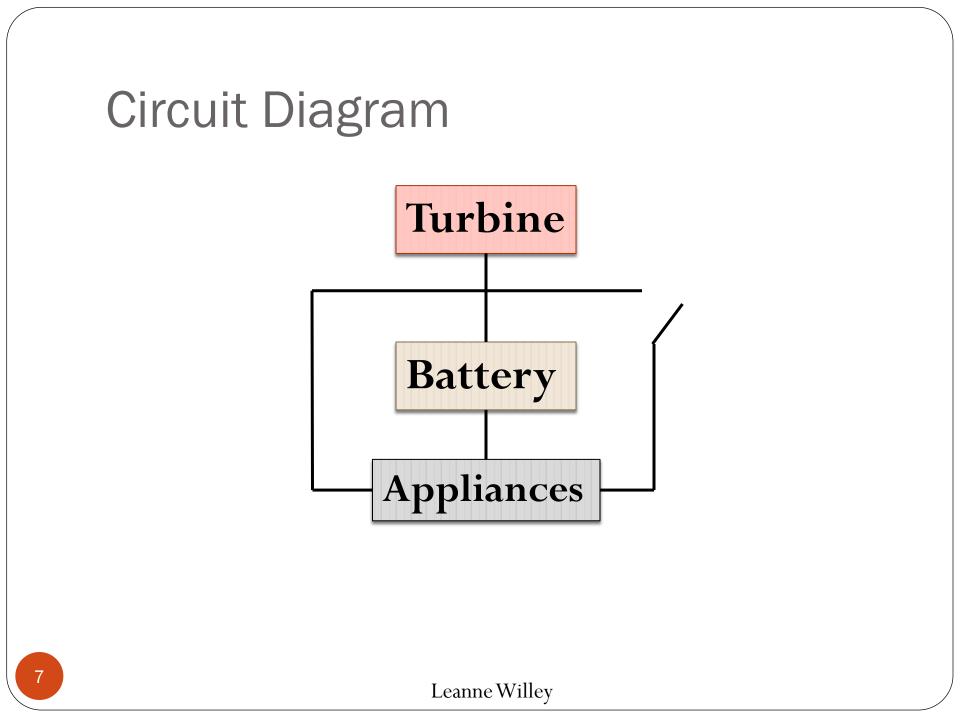
Department of Mechanical Engineering Northern Arizona University


Contents

- Overview
- Final Design
- Electronic Specifications
- Hardware Specifications
- Timeline
- Conclusion

Overview

- **Customer Need**: Inhabitants of third world countries have limited access to electricity.
- **Goal:** Design an inexpensive, portable wind turbine system to harness and store wind energy.
- Requirements/Constraints:
 - Provide at least 0.5 kWh / day
 - Total cost does not exceed \$50
 - Weight does not exceed 45 kg



Battery Specifications

Capacity

- •24 30 Ah
- •288 360 Wh
- Voltage: 12 V
- Charging current: 2.4 3.0 A

Appliance Specifications

- Light Bulb: 14W DC, 12V DC CFL Bulb
- Marine Fan: 20W- 30W, 12V DC, blade diameter 12"

http://store.sundancesolar.com/1 2vdcledreli.html

http://www.westmarine.com

Leanne Willey

Stator Specifications

• Needed:

34 W to power electronics
12 V to charge car battery
DC power supplied

Stator Specifications

http://www.trailtech.net/SR-8200.html

Honda SR-8200 Stator and Flywheel

DC system: 40 W, 12 V, 3.3 A

Leanne Willey

Blade Specifications

- Blade Length: 0.75 m or 2.5 ft
- Angle of Twist to Blade Tip: 5°
- Pitch: 10°
- Taper: Minimal
- Airfoil Shape: NACA 004

Blade Materials

- PVC Pipe: Strength, Low Cost
- Target Pipe Size: Schedule 80, Nominal Pipe Size: 8", Wall thickness > 0.5"

Blade Construction

- Flatten PVC Pipe (Melting Point of PVC: ~ 212° F - Boiling temperature of water)
- Cut PVC into desired shape
- Mold PVC using template + heat gun
- Sand edges to create airfoil cross section
- Setbacks: Strength may be compromised, Consistency of construction process --> COM of blades.

Turbine Shaft

- Runs the length of the horizontal wind turbine
- Length: 30 inches
 Thickness: 3/4 inch (5/8 to 7/8)
 Material: Steel or Aluminum (rebar)
 Balance and Rigidity

Weather Vane Design

- Surface area: 1/3 swept area of turbine blades
- Thin metal (sheet, soda can)
- Counterweights
- Oscillates between 120 degrees

Hub Bearing

- Inter diameter size determined by thickness of shaft (5/8 to 7/8 inch)
- Pressed into wooden hub
- Provides rotation for flywheel and turbine blades
- Washer to keep out debris and dustReadily available

Timeline

Phase 1: Material Collection	Week 1			Week 2			Week 3			ĺ					
	1/14	1/16	1/18	1/21	1/23	1/25	1/28	1/30	2/1						
Reasses Design	•				•										
Gather Hardware Materials		•						→							
Gather Electrical Components		•						→							
Phase 2: Part Construction		Week 4			Week 5			Week 6							
	2/4	2/6	2/8	2/11	2/13	2/15	2/18	2/20	2/22						
Build Hardware Components															
Build Electrical Circuit															
Phase 3: Assembly Construction	Week 7			Week 8			Week 9								
	2/25	2/27	3/1	3/4	3/6	3/8	3/11	3/13	3/15						
Assemble Turbine System															
Connect Electrical System to Turbine System															
Phase 3: Testing / Finalize Design	Week 10			Week 11			Week 12			Week 13		Week 14			
	3/18	3/21	3/23	3/25	3/27	3/29	4/1	4/3	4/5	4/8	4/10	4/12	4/15	4/17	4/19
Test Prototype															
Redesign & Retest Prototype															
Prepare Deliverables															

Conclusion

•Questions?

Leanne Willey