HARNESSING WIND ENERGY FROM RECYCLED MATERIALS

Presentation 3: Engineering Analysis

Design Team 3: Katherine Carroll Margo Dufek Andrew McCarthy Leanne Willey

CONTENTS

- Brief overview of project
- Final design concepts
- Design components
- Component Analysis
- Component Specifications
- Current timeline

PROJECT OVERVIEW

• **Customer Need**: Inhabitants of third world countries have limited access to electricity.

• **Goal:** Design an inexpensive, portable wind turbine system to harness and store wind energy.

• Requirements/Constraints:

- Provide at least .5 kWh / day
- Total cost does not exceed \$50
- Weight does not exceed 45 kg

FINAL DESIGN CONCEPT 1

o 55 Gallon Drum

FINAL DESIGN CONCEPT 2

• Bike Wheel Darrieus Turbine

DESIGN COMPONENTS & ENERGY FLOW DIAGRAM

• Energy Flow Diagram:

COMPONENT ANALYSIS

<u>o Wind Turbine</u>

- Mechanics of Materials
 - Weight, Strength
- Fluid Mechanics
 - Air Density, Wind Speed, Swept Area, Power Output

<u>o Gear System</u>

- Machine Design
 - Gear Ratio, Strength, RPMS

o <u>Battery & Alternator</u>

- Electricity & Magnetism
 - Power Output, Component Interfacing

COMPONENT ANALYSIS: ASSUMPTIONS

- Air density
 - Dependent upon atmospheric pressure and temperature
- Average wind speed
 - Dependent upon region
 - Taken from meteorological data
- Material strength
 - Tabulated strengths for available materials

COMPONENT ANALYSIS: EQUATIONS

• Power generated by wind turbine

$$P = \frac{1}{2}C_p \Gamma v^3 A$$

• Power output from battery

$$P = VI$$

• Gear ratio

$$n_1 = \left| \frac{N_2}{N_1} n_2 \right|$$

• RPM of wind turbine

GENERAL COMPONENT SPECIFICATIONS

• Car battery:

- 12 V
- 40 A
- 1 kWh

• Alternator:

- Produces 13.5 - 14.4 V at 2000 rpm

CURRENT TIMELINE

Phase 1: Needs Identification	Week 1			Week 2					
	9/24	9/26	9/28	10/1	10/3	10/5			
Project Assignment	••								
Meet With Client			••						
Identify Needs / Project Specification & Plan					•				
Prepare Presentation					••				
Compose Report					•				
Phase 2: Concept Generation & Selection	Week 3			Week 4			Week 5		
	10/8	10/10	10/12	10/15	10/17	10/19	10/22	10/24	10/26
Generate Concepts	•								
Prepare Presentation								• •	
Compose Report								•	
Phase 3: Engineering Analysis	Week 6			Week 7					
	10/29	10/31	11/1	11/5	11/7	11/9			
Prelim. Analysis Phase (Gather Information, etc.)	•			→					
Prepare Presentation			•	-•					_
Perform Analysis									
Compose Report									

CONCLUSIONS

• Designs:

- 55 Gallon Oil Drum
- Bike Wheel Darrieus Turbine
- Components:
 - Wind turbine
 - Gear system
 - Alternator
 - Battery

• Analysis

- Fluid mechanics
- Machine design
- Electricity & magnetism

QUESTIONS?