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 Our group was tasked with the goal of designing and creating an autonomous structural 

inspection drone. Presently, building inspection is a lengthy and manual process. Furthermore, it 

can be dangerous. It requires trained inspectors to climb ladders to inspect exterior features 

roofing, windows, and other hard to reach items. We aim to solve this problem by creating an 

unmanned aerial system to do this automatically. With a few strokes by an operator, the drone 

will launch itself, gather and process footage, and report back with broken or damaged building 

features. We utilized open source technologies such as the Pixhawk Flight Controller, PX4 

Firmware Stack, QGroundControl, YOLO object recognition, TensorFlow, and OpenCV, in 

combination with our own custom software stack to enable our structural inspection drone 

solution.  

We performed five documented tests, three of which were step-by-step unit tests, one was 

a matrix unit test, and one was an integration test. We also performed a variety of undocumented 

inspection tests on features such as the drone assembly and the drones ability to interface with 

the ground control station. The first test we conducted was verification of our object detection 

machine learning model. We conducted 12 tests, two on each type of feature we want to detect 

(ie. window, gutter, etc). For each feature, we tested both the damaged and undamaged cases to 

make sure the detection was working correctly. This test took around 28 hours in total, including 

the time it took to train the models. Results were mixed but mostly positive. Our mean average 

precision was 78%, 2% shy of our 80% goal. The second test we performed was verification of 

our damage severity classifiers. Again, we tested both the damaged and undamaged cases for 

each classifier to ensure proper function. The classifier networks train much faster, as they are 

intended to be lightweight. We spent around 2 hours completing this test. The classifier correctly 

predicted the result for each of our cases, however, the mean average precision was lower than 

we hoped for. The third test we conducted was on our action generation. We conducted 8 tests on 

our action generation. We spent approximately 1 hours, testing the action generation in the flight 

control simulator to ensure we hadn’t overlooked any edge cases which might produce a 

dangerous output. All of our action generation tests passed successfully. The fourth test we 

performed was to determine the best deep neural network configurations for each of our 

classifiers. This test trained 27 models for each of the classes and compared their efficacy. 

Training and testing took around 7 hours. This test was very successful, and helped us choose 

our network configuration. The final test we conducted was our system integration test from 

feature detection to drone action. For this test we input a variety of features to observe the 
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generated response. This test was largely successful, however, a few mistakes in the image 

processing pipeline led to abnormal responses.  
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Introduction 

Our group, Team Skeyes, is working with Dr. Abolfazl Razi, an engineering professor at 

Northern Arizona University in the Wireless Networking and Smart Health (WiNeSH) research 

laboratory. His personal projects are centered around predictive modeling for different 

applications including Wireless Networking, Smart Cities, IoT and Aerial Systems. His goal is to 

design new machine learning tools that model and predict network status change, user behavioral 

trends, and traffic mobility in order to accommodate predictable events by taking early decisions. 

He also does work in the medical engineering field, involving the development for tools for 

predictive modeling of biomedical signals for smart health applications. All of his projects are 

supported by the NSF, NIH U54, US Airforce Research Laboratory, and Arizona Board of 

Regents (ABOR). A link to his personal website and portfolio can be found on the NAU website 

at https://www.cefns.nau.edu/~ar2843/. 

Conventional approaches to building inspection are laborious, costly, and dangerous. As 

it stands, an inspector has to personally travel around any building he would like to inspect; 

furthermore, in the case of a particularly tall building, he would have to be elevated to 

thoroughly survey the external surfaces of the structure. This process is slow, expensive, and 

potentially dangerous. On the contrary, the use of an automated drone for such a task would be 

faster, cheaper, safer, and more convenient for everyone involved. The drone will allow a user to 

plug a device into their laptop and give the program some basic instructions, then receive a 

streamlined output of video data that they can use in lieu of performing a manual inspection. The 

user will not have to physically move in order to investigate the building for flaws, they can stay 

in one place and observe the process from a comfortable or convenient location. This drone 

additionally makes the inspection of taller buildings more feasible, as the operator will not have 

to elevate themselves in order to achieve a close investigation of the outer surfaces of the 

building. Additionally, any data that is recorded by the drone can be conveniently stored and 

later accessed by the user. Ultimately, our goal with this product is to reduce the risk, 

inconvenience, and potential overhead of having to perform a relatively simple task such as a 

building inspection. 

 The design of our project is heavily reliant on both hardware and software components. 

The hardware is primarily separated into two fields: the drone apparatus and the ground control 

station. The drone is a quadcopter UAV, which is outfitted with a number of sensors and 

transmitters/receivers. The hardware system architecture can be seen in Appendix B. Each of the 

four motors is controlled by an electronic speed controller. All of the power for the drone and 

auxiliary equipment is supplied by a lithium-polymer battery, and it is regulated and distributed 

by a power distribution board. The flight controller mounted on the drone receives positional 

data from its GPS antenna, accelerometer, gyroscope, and magnetometer, and it transmits this 

data to the ground control station via its telemetry radio. The drone carries a radio control 

receiver to be manually controlled by a remote controller. A gimbal system is mounted on the 

https://www.cefns.nau.edu/~ar2843/
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drone, carrying a GoPro Hero 4 camera, which streams analog video signals via radio back to a 

receiver connected to the ground station. The ground station consists of a laptop running the 

QGroundControl flight control software, connected to a telemetry radio for sending mission 

commands as well as a radio receiver for video data. The machine learning object recognition 

systems are implemented within the ground control software stack on the ground control station. 

 The two primary components of our software are the YOLOv4 object recognition system 

and the severity classification models, which are implemented using TensorFlow and OpenCV in 

Python. The overall structure of our software follows the model-view-controller (MVC) 

architecture, which is a paradigm used to implement user interfaces by separating the project into 

modular components and smoothly controlling and standardizing the flow of data through the 

system as represented in Appendix C. This data flow will occur within the ground control station 

laptop, which receives the video data wirelessly from the drone, and can be seen in Appendix A.  

This video data is sent to our YOLOv4 model, which annotates the video feed and displays it to 

the user in QGroundControl. At the same time, it outputs snipped images of structural features to 

the damage classification network using OpenCV. This classification process will determine 

what inputs are prompted from the user, i.e., whether they want to continue the mission or pause 

to keep inspecting the feature. These commands will be transmitted to the drone via MAVLink 

and will be displayed to the user in QGroundControl. 
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System Architecture 

 
Figure 1. Hardware System Architecture with Tests 

 

 

 
Figure 2. Software System Architecture with Tests  
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Requirements Spreadsheet 

 
Figure 1. Requirements, Status, and Test Types  
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Primary Requirements 

Requirement 1.1 – The drone must be operable using a user interface. The purpose of the 

graphical user interface is to configure the drone upon start-up, as well as to ensure a smooth 

display of information and prompts to the user. This requirement is important to our client 

because he would like the drone to be theoretically operable by an individual who is not an 

engineer or software designer. It should be clearly laid-out and easily operable by reading the 

user manual, which will detail the recommended settings and parameters of the drone. This 

requirement is a core feature of our project, and if it were not met then this drone would never 

(theoretically) go into production or distribution, since it would be largely inoperable by the 

general populace. 

  

Requirement 2.1 – The drone will use image processing in order to isolate and identify 

features relevant to the operator, which should be at least 80% accurate. The system 

necessarily will use image processing and feature detection in order to semi-automate the 

inspection process. In order to ensure that the drone would actually be effective in practice, we 

have set a baseline accuracy of 80% when both the object recognition and damage classification 

systems are implemented. This requirement is important to our client because his field of study 

largely involves image processing and machine learning applications. If the device did not 

effectively implement machine learning, it would simply be a video-recording drone, which is 

not particularly innovative or revolutionary. If we were to fall short of the accuracy threshold, 

the project would not be ruined, as long as we were able to provide proof of concept; however, 

we would not want to deploy the device in a real-world setting. 

 

2.2.1* Each YOLOv4 feature should be recognizable with at least 90% accuracy. This 

requirement indicates that the You Only Look Once v4 (YOLOv4) object recognition system 

should have a mean average precision (mAP) of 90%. This means that the when the average 

precisions of all the classes are averaged, the result should be 90%. This is important to our 

client because it is a central feature of the drone as an inspection and analysis device. If this 

threshold were not met, once again, the project would not be ruined, but we would not want to 

deploy the device in a real-world setting. 

 

Requirement 2.4 – Feature detection within the video feed will trigger appropriate 

commands to be sent via MAVLink. This requirement means that the YOLOv4 object 

detection event will instruct the drone to halt its mission in order to investigate; if the feature is 

classified as defective, the drone will prompt the user to give input, otherwise, the mission will 

continue. This feature is additionally important to our client in order to distinguish it from a 

simple video recording drone. The drone should be able to react dynamically to the visual stimuli 

that it is receiving, otherwise the drone is fairly mundane, and the project is ultimately a failure.  
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Testing Types 

UTM stands for Unit Test, Matrix, which is a form of testing in which a series of pre-

determined, varied inputs which are structurally the same are given to a system to test the 

function of a single process. We performed this test to identify the configurations that were the 

most effective for each of our damage classification convolutional neural networks. This was 

useful because we were able to test a range of convolutional layers, dense layers, and nodes per 

layer in rapid succession, which demonstrated to us the most optimized format for different 

datasets. 

UTS stands for Unit Test, Step-by-step, which is a form of testing in which a series of 

instructions are performed within a system, perhaps with a single input, which are completed in a 

number of stages. We primarily used this type of testing since it is the most relevant to the 

evaluation of the performance of neural networks. For both our object recognition and damage 

classification systems, we were able to input a validation dataset, as well as individual images to 

be processed and displayed, in order to calculate the average precision (AP) of each using the 

built-in functionalities of Darknet and TensorFlow, respectively. 

Integration Testing is used to ensure that multiple subsystems within the product function 

nominally together, as opposed to the performance of individual modules. We used this to test 

the latency, fidelity, and overall effectiveness of the data flow through our system. There are a 

number of different software components which are receiving and outputting data, so this 

method allowed us to effectively analyze whether the individual components were working 

properly together. For example, the camera takes a video, which is transmitted to the ground 

control station receiver then analyzed by the object recognition system, cropped, and sent to its 

respective classification network. At this point it is displayed to the user and a particular action 

or prompt is generated based on the severity of the damage. 

Inspection Testing is a type of testing in which a simple visual (or other sensory) 

assessment of a component is performed, without any specific testing process or inputs. We 

primarily use this type of test to ensure that the assembly of the drone is nominal. For example, 

we can inspect the drone to make sure that the components are all attached tightly, that the drone 

is receiving input from the remote controller and flight control software, or that the video data is 

being collected by the camera then transmitted and received between the drone and the ground 

control receiver.  
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Major Documented Tests 

Major Test 1: YOLOv4 Object Recognition 

 The first major test that we performed was the YOLOv4 object recognition accuracy test. 

We trained the YOLO model three times, using varying numbers of classes and sizes of datasets. 

The process was performed using a Jupyter notebook in Google Colaboratory, which allows 

users to access a graphics processing unit (GPU) via the use of a virtual machine. These models 

each took over 8 hours to train, even with the GPU acceleration, so we generally trained them 

overnight.  

The first model that we trained was only trained to recognize windows. The image 

dataset was fairly low – at around 150 images – as it was our initial test on learning how to train 

a neural network. It was fairly accurate, considering its small training dataset, with an average 

precision (AP) of 73%, since it was only set to recognize windows.  

The second model that we trained was trained to recognize windows, gutters, roofs, and 

walls, and was quite inaccurate. The dataset for the walls and roofs was practically nonexistent, 

being around 25 images each, and this model took much longer to train due to having 4 classes to 

attempt to recognize. The windows and gutters had about 200 and 100 images, respectively, in 

their training sets, and had a mean AP of around 70%, which we believe was somewhat reduced 

by the attempts to identify other classes. 

The third model that we trained was only trained to recognize windows and gutters, since 

we had the most data for those two sets – 300 and 100, respectively – and they have the most 

recognizable features. This was significantly quicker to train than the previous, since there were 

half as many features, and it was more accurate as well. The mean average precision was 78% 

with this model, with an AP of 72% for gutters and 84% for windows. This model was more 

reasonably functional and served well as a proof of concept since it could reliably find windows, 

even with relatively low confidence values. 
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Major Test 2: Damage Severity Classifier Optimization 

 This test was a black box matrix unit test designed to help us determine the most effective 

configuration for our convolutional neural networks (CNNs). CNNs are fundamentally made up 

of convolutional layers and dense layers, which are implemented with different activation 

protocols, different numbers of nodes, and varying levels of compression. The only way to 

effectively design a CNN is by trial and error since it cannot necessarily be calculated based on 

the image dataset available. As such we divided our image datasets for windows and gutters into 

defective and nominal categories for training. Using a series of nested for-loops, we configured 

and trained 27 different models on the same image datasets. We used an image input size of 

128x128 pixels, normalizing the training and testing data, as necessary. We used a batch size of 

8, due to relatively small datasets of 300 windows and 150 gutters, and 15 epochs to avoid 

overfitting, as we have found most effective previously.  We performed this process on both of 

our datasets, allowing us to find that the model with 3 convolutional layers, 32 nodes per layer, 

and 2 dense layers was the most effective for our window dataset with a validation loss of 0.4803 

and a validation accuracy of 80.6%, as seen in the table below. Similarly, when run on the gutter 

dataset, we found that a CNN with 3 convolutional layers, 128 nodes per layer, and 0 dense 

layers was the most effective with a validation loss of 0.5007 and validation accuracy of 70.73%, 

for a mean average precision of 75%. This was below the 90% mAP threshold that we were 

attempting to achieve; however, once again, it was accurate enough to be functional for the 

purposes of testing the integration of all of the components together. 

 
    

 Results

Test Number of Convolutional Layers Number of Nodes Per LayerNumber of Dense Layers Validation Loss -  Validation Accuracy

1 1 32 0 1.2203 -  0.6511

2 2 32 0 0.6418 - 0.6889

3 3 32 0 0.5105 - 0.7642

4 1 64 0 1.3210 - 0.6410

5 2 64 0 0.6124 - 0.7161

6 3 64 0 0.5116 - 0.7724

7 1 128 0 1.4319 - 0.6415

8 2 128 0 0.6958 - 0.6288

9 3 128 0 0.6866 - 0.7345

10 1 32 1 0.6932 - 0.4973

11 2 32 1 0.6932 - 0.4973

12 3 32 1 0.5162 - 0.7703

13 1 64 1 0.6931 - 0.5029

14 2 64 1 1.2960 - 0.6976

15 3 64 1 0.5247 - 0.7782

16 1 128 1 1.4192 - 0.6581

17 2 128 1 0.7285 - 0.5406

18 3 128 1 0.4830 - 0.8060

19 1 32 2 1.0445 - 0.6843

20 2 32 2 0.5616 - 0.7500

21 3 32 2 0.4792 - 0.7831

22 1 64 2 1.3918 - 0.6716

23 2 64 2 0.7490 - 0.7324

24 3 64 2 0.5257 - 0.7972

25 1 128 2 1.3729 - 0.6811

26 2 128 2 1.2811 - 0.6729

27 3 128 2 0.5495 - 0.7897

Input
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Results Analysis 

All of the basic functionalities were completely effective under the test conditions. The 

core of our software design, primarily developed by Daniel, was very modular and organized, 

which allowed us to efficiently design each file systematically and cleanly. The overall 

implementation worked perfectly well, as did the general flow of image data since the high-

level wrapper code ensures that all of the inputs and outputs are normalized and in the proper 

format. The video input stream, YOLO output cropping function, feature isolation and image 

filtering, annotated display, and action generation all work completely nominally. We were 

able to store and implement the YOLO and TensorFlow models and weights files and retrain 

them as needed without having to change the wrapper code. In a controlled environment, 

with high quality images and videos, the system worked fairly well, bounded only by the 

accuracy and reliability of our neural networks. We were somewhat concerned since the 

system did not seem to function as well on raw data that we collected using the drone flights 

– data that was less curated.  Ultimately, the YOLOv4 network had a mean average precision 

of about 79% and the classifier networks had a mean average precision of about 72%, which 

is only about a 57% overall precision.  

The results were relatively close to what we expected. We were disappointed to find that 

the neural network accuracies were lower than we had originally intended them to be. We 

had hoped to achieve at least an 80% overall precision, which we were unable to do with 

such limited datasets. Two of the primary requirements were not met in their entirety – the 

overall precision and the object recognition precision – since we did not achieve the 

thresholds that we were aiming for; however, we were able to get close enough to create a 

functioning system, regardless of accuracy or correctness. The graphical user interface and 

action generation requirements were met.   
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Lessons Learned 

Throughout the process of developing our structural inspection drone, we had a lot of 

things go wrong. During our first unmanned test flight of the drone, an assembly oversight led to 

the GPS antenna coming loose and falling out of position. As a result, we hit the kill switch to 

keep the drone from aimlessly flying away. It then fell from the sky and broke. On another 

occasion, we faced a similar issue where a propeller became unfixed during the flight, resulting 

in the drone falling to the earth. These setbacks were unfortunate and inconvenient, but we 

rebuilt and utilized lock tight and other methods to prevent more mechanical failures from 

happening.  

One of the biggest challenges for this project was developing the machine learning 

models. For all of us, this was our first real time using machine learning for image processing, so 

it was an area of huge growth for us. We got our models working pretty well, however, without 

access to vast quantities of good image data, it wasn't possible to get it working as well as it 

could have. We gathered our own dataset utilizing a mix of images gathered around flagstaff as 

well as the internet. Finding high quality images of broken or damaged items was very difficult. 

Many of them were cartoon drawings or otherwise not useful for our set. Additionally, we 

weren't able to collect many images of broken features around Flagstaff because people usually 

fix broken things. In the future, the dataset is definitely one of the areas in need of improvement. 

Doing so would vastly improve the quality of our object detection and image classification, and 

furthermore the performance of the entire system. 

Our tests for the most part were well written and strictly defined. We had no real 

difficulty testing our system according to our tests. One of the particularly frustrating aspects of 

our tests, however, was that several of them were on our machine learning models. The machine 

learning tests were so frustrating for two reasons. Firstly, if it isn’t behaving the way you expect, 

there is no real way to know why. It is simply not possible to look at the model and understand 

the decisions it makes. As a result, if something is wrong, fixing it is largely guess and check. 

Secondly, creating a new model takes a lot of time. Training our object detection network took in 

the order of days.  

Regression testing was done at intervals along the way. We wrote software unit tests to 

test our software automatically, ensuring that even after a new change was made, the previously 

tested code still worked. On several occasions, we updated our codebase and introduced new 

bugs that might not have been otherwise detected. Regression testing is especially important 

when you are operating a potentially dangerous piece of equipment, such as a quadcopter.  
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Appendices 

Appendix A – Software System Architecture 

This diagram shows the flow of data between software blocks from video input to action 

output and user display. 
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Appendix B – Hardware System Architecture 

This diagram shows the overall structure of our system, including all of the hardware 

components and their connections to the ground control station. 
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Appendix C – Model-View-Controller Program Architecture 

 The model, view, controller design is extremely powerful because both the model (back-

end) and view (front-end) are completely oblivious of each other. As a result, changes can be 

easily made to either one without updating the other. 

 


