

User Manual For
Automated 3-Way Syringe Mixer

3-Way Syringe Mixing Team
Team Members:

 Vincent Jencks vkj3@nau.edu

 Andrew VanDenburgh amv336@nau.edu
 Colton Smith css266@nau.edu
 Yunchen Zhu yz246@nau.edu

 Handi Xi hx25@nau.edu

EE486C – Spring 2018
Project Sponsor: Timothy Becker
Faculty Mentor: Ashwija Korenda

Instructor: Dr. Kyle Winfree

Introduction 4

Setting Up Device 5
Pin Configuration: 5

PCB PINS 5
Display Pins 5
Button Pad Pins 6
GPIO Pins 6

Hardware Installation and Setup Guide: 8
Software Setup Guide 9

Libero SoC setup guide 9
SoftConsole setup guide 10
Getting to the Code 10

Button Setup 13

Configuration & Use 13
Software Configuration: 14

Main.c 14
Int StartScreen(void) 14

Config.c 14
Void setGPIO(void) 14
Void setSPI(void) 15

MyFabricControl.c 15
void init(void) 15
void user_data(uint8_t value) 15

MyCorePWM.c 15
void setPeriodMyCorePWM(uint8_t value) 15
Void setNegEdgeMyCorePWM(uint8_t value) 16

Display.c 16
void clearDisplay(void); 16
void returnHome(void); 16
void entryModeSet(uint8_t ID); 17
void displayOnOff(uint8_t ID); 17
void cursorShift(uint8_t ID); 17
void writeDisplay(uint8_t data); 18

Mixing Process 18

Maintenance 19

Troubleshooting Operation 19
PCB Troubleshooting: 19

Error Loose Connection: 20
Test Point Voltage Check: 20
Check Current Output 21
PCB Malfunction: 21

Code Troubleshooting: 22
A Component Blew Up: 23
How the Control Circuit Works: 23

Status of Planned Features (WBS) 25
Chassis 25
Circuit 25
Software 25
Hardware 26

Vincent: 27
Andrew: 31
Colton: 33
Yunchen: 36
Handi: 38

Future Improvements 40

Conclusion 41

Appendices: 42

Introduction
In society today, most if not all medical procedures have some sort of automation to them,
however some syringe mixing procedures are still done by hand. Due to the recent focus of
treating aneurysms using a liquid embolic method for filling and removing the aneurysm within a
vessel, there has been a demand for an automated mixing system. As of this report there is no
recorded existence of an automated three-way mixer. While the process of understanding how
the syringes are mixed is not complicated, the amount of factors that need to be monitored or
regulated during the process is what makes the design cumbersome.

Due to how recent the development of the PPODA-QT liquid embolic treatment is, there is no
known precise flow rate for the liquids to mix properly. With the development of an automated
process to mix the liquid components of a PPODA-QT syringe, doctors will be able to treat
aneurysms without worry of the current human error involved in the process. This development
would allow hospital staff to have one less worry when attempting to isolate and treat the
neurological condition of an aneurysm within a blood vessel.

We are pleased that you have chosen 3-Way syringe Mixer team for your needs.Our team
designed an automated mixing system which will interface with syringe models already in
existence. There is a strong need for this mixing system, as the evidenced by aneurysm remedy.
We provide for you here a useful system for liquid medication mixing that has been
user-designed to meet your needs. Some of the key highlights include: The user will set the
T-jointed syringe configuration, holding 3 syringes, into our design. After the syringes are placed
within the device, the user will be able to input a mixing strength that the device should take
when mixing the liquids and set them mixing time. Then the user can get read the mixing data
from LCD screen. After the mixing is done, the user will be able to safely extract the finished
mixture which will be used in the liquid embolic treatment.

This manual contains important information for the use and maintenance of this device. It starts
with preparing the use of the syringe mixer as well as the proper connections needed from the
microcontroller to the PCB (Printed Circuit Board) and to off board components. The guide will
also help the user understand where problems may occur and potential fixes to these problems.
The purpose of this user manual is to help you, the client, reasonably use and maintain the 3-way
mixer product in your actual business environment going forward. Our goal is to make sure that
you are able to benefit from our product for many years to come!

Setting Up Device

Pin Configuration:

PCB PINS

Motor 1 Output to Motor 1

Motor 2 Output to Motor 2

Motor 3 Output to Motor 3

JP5 Connect Motor 3 adjacent to Motor 2. Connect
for three motor setup or leave open for two motor

setup

SU1 Display PinHead

SU2 Display PinHead Continued

SU4 Button Pad Pin Head

Vin_Socket 12 Volts DC input : DC Power Jack type a
connector

Display Pins

VSS Ground

VDD 5V

Vo Display Brightness Control Use Potentiometer to
Adjust

D0 Data

D1 Data

D2 Data

D3 Data

D4 Data

D5 Data

D6 Data

D7 Data

White 5V LED

Black Ground LED

Button Pad Pins

R1 Row 1 Input

R2 Row 2 Input

R3 Row 3 Input

R4 Row 4 Input

C1 Column 1 Output

C2 Column 2 Output

C3 Column 3 Output

C4 Column 4 Output

GPIO Pins

GPIO_0 Motor_Select_1

GPIO_1 Motor_Select_2

GPIO_2 Direction_1

GPIO_3 Direction_2

GPIO_4 R1

GPIO_5 RW

GPIO_6 E

GPIO_7 RS

GPIO_8 BUTTON_1

GPIO_9 BUTTON_2

GPIO_10 BUTTON_3

GPIO_11 BUTTON_4

GPIO_12 BUTTON_5

GPIO_13 BUTTON_6

GPIO_14 BUTTON_7

GPIO_15 BUTTON_8

FPGA_GPIO_0 D0

FPGA_GPIO_1 D1

FPGA_GPIO_2 D2

FPGA_GPIO_3 D3

FPGA_GPIO_4 D4

FPGA_GPIO_5 D5

FPGA_GPIO_6 D6

FPGA_GPIO_7 D7

FPGA_GPIO_8 PWM

Hardware Installation and Setup Guide:
Connect SmartFusion SoC (System on a Chip) board to PCB as shown below in picture

Figure 1: Header Connection

Figure 2: Base and Actuator Mount

As seen in Figure Y, there are some 3D printed parts attached to the steel T-Bar. The steel bar is
layed out In the T-Shape as the joint connection puts the syringes into a T. The syringes need to
be steady when the mixing is occuring, as bending a plunger of the syringe can cause the actuator
to keep pushing and eventually snapping the plastic. To hold these syringes there are three 3D
printed holders (yellow) that have divits for the syringe to fit into. Then a top is put through
screws and clamped down with the use of wing nuts. These were chosen as they are fast to
remove and put on.

Once this is done the end of the plunger will be placed inside of the lips in the blue 3D printed
parts. These are there to allow the actuators to not only push but pull the actuators to help relieve
the load for other actuators while mixing as well as having the ability to pull liquid into one
syringe.

The actuators themselves are clamped to the steel bar with the use of hose clamps, one right
before the piston and one around the largest point. With the use of hose clamps, the actuators can
be adjusted in location based on how filled the syringes are as well as varying syringes. While
this process is slightly time consuming it allows for variable syringes and well as different cc’s
of fluid. If similar conditions are set, the actuators should not have to be adjusted.

Software Setup Guide
There is no software needed to set up for normal use of the product. However, the team has not
been able to fully finish the product. This tutorial on Libero, and Softconsole will teach future
engineers or enthusiasts on how to further develop the Software used in this project.

Libero SoC setup guide
Libero is a microsemi program for programming the SmartFusion boards as well as other boards
owned by them. Libero is necessary if the user wishes to modify the programming in the future.
This program creates a GUI interface that will allow user to enable or disable peripherals on the
SmartFusion board, as well as define their features. Peripherals are all the other gadgets hooked
up to the microprocessor. The peripherals used in this project are the Fabric Interface (FPGA),
GPIO (General purpose input/output) , and Clock Management. Note that every peripheral is
well documented by microsemi and you may search these manual at microsemi’s website

To download Libero go to “​www.microsemi.com​” navigate to FPGA SoC in products menu,
then go to design tools, and then libero. After downloading Libero you will need a license to run
the program. You may request a silver license which is free for one year and may be renewed.
Visit the microsemi website for more information.

http://www.microsemi.com/

SoftConsole setup guide

SoftConsole is a C# based language used to write to the microcontroller. After peripherals have
been configured in Libero the next step is to write code to the MPU (Micro-processing unit).
The MPU used in the SmartFusion board is an ARM M4 which is a efficient yet powerful MPU
made for embedded systems.

SoftConsole should install with Libero. However to download SoftConsole manually go to
“​www.microsemi.com​” navigate to Partners, then to accelerate ecosystems and design tools.

Getting to the Code
After opening Libero navigate to Project → Open Project. Then navigate to the project that has
already been set up. The project should be a .prjx file.

http://www.microsemi.com/

After navigating to the project it is important to program the device after hooking up the
SmartFusion board to the computer.

Following the programming of the device there should be check marks along the left column
next to many of the different tool names. If an X comes up then there is an error that will need to
be fixed.
When the device has been programmed it is then possible to pull up the code by clicking on the
Write Application Code Section.

A new window for SoftConsole will then pop up showing the many different tabs of code that
can be accessed. Each one plays a role in the construction of the code, by being referenced in the
main code which can be seen when SoftConsole is initially opened up.

To run the code, it is important to first go to Project → Clean… which will setup the code to be
able to be run. When another window pops up make sure to hit clean all. This step should be
executed each time the code is changed after being saved.

After cleaning the program, go to Run → Debug Configurations… to have the code initialized to
be able to run.

The code is then ready to be run by pressing the Continue button on the control bar.

If at any time the code needs to be manually stopped, the terminate button can be pressed. When
this happens though, it means that the Debug Configurations… will once again need to be called.

Button Setup
Simply insert the button pad into the 8 pins that are linearly connected at the bottom right of the
PCB which is right next to the header which connects the PCB to the SmartFusion board. When
inserting it is important that the button pad when falling away from the PCB will be button side
down.

Configuration & Use

Now that everything is hooked up all that should be left to run the device is to hit a few buttons
on the button pad. Hitting the 1 button on the pad should cause the system to stop at any point in
time during the process. When pushed, it will be needed to run debug configurations once again
because the code will exit the program altogether. By hitting button 2 the code should run
autonomously for the specified amount times written within the code. The points of the code that
control the timing and mix number are explained within the software configuration section
below.

Software Configuration:
This section is meant to show how different pieces of code are used within the whole code.

Main.c

Int StartScreen(void)

This function is used to Start the device. Its purpose is to take in inputs from the user to define
preconditions in the mixing process.

Condition Enter​: When enter is passed the StartScreen() function exists and begins mixing.
Condition Reset​: When reset is pased the StartScreen() function turns off Relays, Exits Code, and
safely shuts down.

To Do Condition Power​: When power is passed it will set the precondition of the PWM duty
cycle. This function is uncomplete and needs to be implemented by future engineers or
modifiers of this project.

Example:

uint8_t neg_Edge = 0x00;
setNegEdgeMyCorePWM(neg_Edge); <- see MyCorePWM for more information
setPeriodMyCorePWM(0x08); <- see MyCorePWM for more information

Int main(void)
{
neg_Edge StartScreen();
}

Config.c

Void setGPIO(void)

This function sets up parameters needed to use GPIO ports. This function must be called before
anything to setup preconditions for the PCB circuit.

Example:

setGPIO();

Void setSPI(void)

This function set up parameters needed to use SPI 1. External SPI devices may interface with
project by using this interface. This function must be called before calling any other SPI
functions in driver.

Example:

setSPI();

MyFabricControl.c

void init(void)

Does nothing

void user_data(uint8_t value)

This function passes in the corresponding GPIO pins to be set on/off for the fabric gpio pins.

Ex:

user_data(0x03); <- bring fabric gpio pins 1 and 2 high and others low

MyCorePWM.c

void setPeriodMyCorePWM(uint8_t value)

This function sets the period trigger of the PWM pin. Combined with setNegEdgeMyCorePWM
this function is used to create a PWM signal at users specifications.

Note: Takes in clocks then number passed in the amount of clock cycles before trigger event

Math:

Time for Period (s) = Fabric Frequency (1/s) * value

Ex:
This code sets the pwm from off to 50% duty cycle at 8 clock cycle period
setPeriodMyCorePWM(0x00); <-set period 0 so signal low all times
setNegEdgeMyCorePWM(0x00); <-set negative edge trigger 0
setNegEdgeMyCorePWM(0x04); <-sets negative edge to 4 clock cycles
setPeriodMyCorePWM(0x08); <-raises period trigger to 8 clock cycles

Void setNegEdgeMyCorePWM(uint8_t value)

This function sets negative edge trigger of the PWM pin. Combined with
setPeriodMyCorePWM this function is used to create a PWM signal at users specifications.

Note: Takes in clocks then number passed in the amount of clock cycles before trigger event

Math:

Time for Negative Edge Trigger (s) = Fabric Frequency (1/s) * value

Ex:
This code sets the pwm from off to 50% duty cycle at 8 clock cycle period
setPeriodMyCorePWM(0x00); <-set period 0 so signal low all times
setNegEdgeMyCorePWM(0x00); <-set negative edge trigger 0
setNegEdgeMyCorePWM(0x04); <-sets negative edge to 4 clock cycles
setPeriodMyCorePWM(0x08); <-raises period trigger to 8 clock cycles

Display.c

void clearDisplay(void);

Clears the display

void returnHome(void);

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address
counter
Return cursor to its original site and return display to its original status, if shifted. Contents of
DRAM does not change

void entryModeSet(uint8_t ID);

I/D Increment /decrement of DDRAM address (cursor or blink). When I/D = "High",
cursor/blink moves to right and DDRAM address is incremented by 1. When I/D = Low,
cursor/blink moves to left and DDRAM address i decreased by 1. CGRAM operates the same as
DDRAM, when read from or write to CGRAM

void displayOnOff(uint8_t ID);

This function controls diplay’s on/off state as well as the cursor on/off state
Parameter ID: (0bXXXXXDCB)

D: Display On OFF control bit - set high to turn on display or, bring low to turn off display
C: Cursor On Off control bit - set high to turn on cursor
B: Cursor Blink control bit - set cursor to blink
Ex:

diplayOnOff(0x00); <-turns display off
diplayOnOff(0x09) <-sets display on with cursor and cursor blink

void cursorShift(uint8_t ID);

Shifts the cursor left or right based on the parameter passed in to ID
Parameter ID: (0bXXXXXABX)

A: Shift Left: Set high to shift cursor left
B: Shift Right: Set high to shit cursor right

Ex:

cursorShift(0x04); <-shift cursor left
cursorShit(0x02); <-shift cursor right

void writeDisplay(uint8_t data);

This function write to display. See Technical document on display 1602A to see all write
commands for data.

Parameter data: Code to write to display. Each data code has linked character to write to display.

Ex:

writeDisplay(0x03) <- write ‘0’ to display
#see 1602A display document for more data commands

Mixing Process

User confirms that they want to start a mix

User defines the mix length desired

The device starts by mixing the linear syringes together

Then the hardening agent is added into the mixture

The device mixes the linear syringes once more

After mixing the fluids are retracted from the initial syringe holding the hardening agent

Finally, the mixed fluids are able to be used for aneurysm treatment

Maintenance

The most significant thing for maintenance is to keep the syringe mixer clean. Reasonable usage
may extend the service life. Use disposable syringes and keep equipment in shady and cool
environment without sunlight and moisture. After use, clean the device and make sure there is no
residue around. When not in use, put the equipment in a confined place to protect it. Besides,
properly lubricated and periodic check on components are needed based on the operating
frequency. The microcontroller board may be more likely to have a long lifetime. Finally, keep
the equipment away from children and out of reach.

Troubleshooting Operation
When troubleshooting, it is important to remain calm and constantly test to see what may be
going wrong. Below are some of the possible things that could go wrong.

PCB Troubleshooting:
First, before following the advice below, double check that all of the components are on the
board and that any wires that connect to the PCB are properly attached. It is assumed that even if
the new PCB layout is used, it is possible that modifications will be made using wires. A
multimeter is required for the steps to come. Also, make sure that the voltage source is NOT
plugged in at the start of your troubleshooting procedure.

Error Loose Connection:
Step 1: The most important thing to do when troubleshooting is to check connections which
occur between the SmartFusion and the PCB. Be extra careful not to directly connect the
voltages coming out of the SmartFusion to the grounds of the SmartFusion.
First, connect the SmartFusion to the PCB if it is not already. Then, using the test points on the
PCB, make sure that each part of your circuit that should receive power are receiving power
from the SmartFusion.

If, everything is as expected, then you can move to step 2. If, you find out that the voltages are
not within an acceptable range, it is likely that the circuit has bridging, there is a wire connected
incorrectly, or there are wires touching that shouldn’t be. Bridging is when solder connects
multiple pins, that are next to each other, that should not be connected. At this stage the
multimeter won’t help out much, and you will need to rely on your eyes. Luckily however, you
can look at the Eagle schematic which should help you see how each component on the PCB is
supposed to be connected.

Test Point Voltage Check:
Step 2: After making sure that the initial connections are fine, you should now use the test points
given to check other pieces of the circuit. The reason we do this before plugging in the external
power source, is that the voltage and current from the SmartFusion will be much lower. Meaning
that if anything does go wrong, there is less of a chance that components will be damaged. While
going through these procedures it is likely a good idea to have the Eagle schematic of the PCB
up, to verify connections. If the Eagle schematic and board are up at the same time, you can click
the eyeball button on each, which allows you to see the interaction between the two.
Additionally, if any of the components require SmartFusion input to function, you can step
through the code to create different test scenarios, allowing you to have better insight as to what
is happening.

When testing a specific component, put the 5V line or an active output line to the input of the
component, using the test points. The test points are the rods which stick up all over the PCB to
help analyze what is happening at that spot in the design. Don’t forget to factor in the amount of
voltage and current that each component is rated for. Then after considering these factors you
should be able to deduce if that component is working as intended by measuring the output pins
of the component or any test points connected with the output.

If everything is working then move onto another component, until you are sure that the
components are working appropriately. However, if there is an issue then you should first double
check the schematic of the component to make sure that it’s pins are in the correct configuration.
Additionally, if the component being looked at has multiple pins, which are to be working and/or
giving an output, it is crucial that each one is checked for appropriate values. If the component
isn’t working at all, then it could be a defective component or there may be a bad connections.
Bad connections come in many forms ranging from a poor soldering (too little) connection to
the PCB, to wires or pins being connected together which shouldn’t be. In the case of too little
connection there will likely be little to no voltage or current where it needs to be. In the case of
extra connection there will be voltage on places where there shouldn’t be voltage, and can often
be found on the pins of the same component or nearby components. Either way, this will mostly
require careful examination.

Check Current Output
Step 3: Now that we know that the components are correct we can plug in the power supply to
the PCB, AFTER making sure to unplug the previous testing. Note, that if jumpers between the
test points are still in, something is likely to catch fire or explode (trust us).

With the power source attached you can now use the multimeter to test the connections along the
path that requires the external voltage. Similar to the previous step you will be checking the
components to make sure that each one is working as intended, with the possibility of stepping
through the code to create different cases and looking at the Eagle schematic. If you are at this
step however, it is more likely that the problem lies in the components that are only hooked up to
the power supply or the connections themselves. If the components are all working as intended
then it is possible that any wires on the board are causing the issue, by connecting things that
shouldn’t be connected or just connected incorrectly.

PCB Malfunction:
Step 4: Given that nothing was overlooked when following the previous steps, then the problem
is likely to be the PCB itself. Either the amount of current and/or voltage was too high and the
PCB couldn’t handle it or the PCB’s design was faulty from the start.
There isn’t much to be done when the PCB has been overvolted, due to the fact that this will
likely cause bridging between lines inside of the PCB. If it is unknown where that bridging has
happened it is extremely difficult to proceed and may be best to order a new PCB with
modifications. Increasing the width of the internal lines of the PCB should allow for more
current and voltage to run through the lines. If it is known where the internal bridging has

happened you can cut the line between the components. Following this, wires can be soldered to
connect the components directly.

Similarly, when the PCB design is incorrectly setup, it is possible to cut the internal lines without
needing to order a new PCB. To cut the line, you will need a small sharp blade (box cutters and
scalpels are sufficient). With the blade you should make a cut where there are few other lines
close by. When cutting be sure to scrape along the line’s direction until you see the copper. After
being revealed you will need to apply a little extra force on the copper to scrape it out of the
PCB. It is important not to cut too far because it is eventually possible to affect the lines on the
other side of the board. Finally after the cut apply wires to any connections which now need to
be made.

Code Troubleshooting:
When troubleshooting the code it is important to reference the previous section which describes
how the different pieces of code function. Understanding how the pieces of code work together
may help to solve the issue occurring.

Step 1: Double check that any naming conventions are accurate, as even the best coder can at
times misspell proper variable or function names. Alternatively, it is possible that similar
function names can cause for confusion within this process.

Step 2: If the code seems unclear then it is possible to test different portions of the code. This can
be done by adding breakpoints around the area that wishes to be tested. A breakpoint makes it so
that the code is paused on that point, but does not execute the code on that line. A breakpoint can
be made by double clicking to the left of one of the numbered lines. Breakpoints will show up as
a circle next to the number of the line, and can be made to disappear by double clicking them
again. It is recommended that test points be set after the outputs have been set, so as not to
confuse you on what is happening with the code. Make sure that when done testing the code,
that there are no more breakpoints, which could cause your code to halt at inopportune times.

Additionally, when testing the code with the test points it is possible advance from one test point
to the next by simply hitting the continue button mentioned previously. However, if it is desired
to step through single lines of code at a time, it is important to use the step function which allows
the user to do just that with each click.

A Component Blew Up:
Whenever, this happens it is important to rapidly remove power sources from the devices.
Hopefully, this was done before reading this in the manual.

Confirm that all power is disconnected from the circuit. After this has been checked proceed to
discover where the problem has occured. This should be able to be done by simply identifying
the connections associated with the component which ‘blew up’. Most often in these cases,
something was wired incorrectly resulting in the overloading of a component past its tolerable
threshold. In the case that the connections seen to the naked eye are correct, then the problem lies
within the the previously made circuit connections. For assistance on finding out what is wrong
with the PCB, please see the PCB troubleshooting section above. Before consulting the section,
it is important to take the component that ‘blew up’ off the board by desoldering it. Once off the
board, it is advisable to not put another component on the board, considering that the same
outcome will come to fruition. While following the above troubleshooting guide try testing the
component pads for correct values instead of the component itself. Additionally, in the case that
the component’s function was crucial, you can always simulate it by connecting wires from one
pad to another, by hand or through a soldered connection.

How the Control Circuit Works:
Figure D shows the current layout of the PCB. At the top right is where the power supply from
the wall plug connects to. At the very bottom is the header that connects from the PCB to the
SmartFusion board. Parts were removed as they were unneeded and to avoid open circuits, wires
jumping from location to other location can be seen. The pins in the bottom right are what
connects to the button inputs for the design. The pins on the bottom left are what connect to the
display. The Pins at the top left are what go out to the motors. In the set of two pins, the bottom
pin connects to the black wire of the motor while the top pin connects to the red wire of the
motor.

Figure 3: PCB Layout

Voltage to the circuit starts from the power socket, and then immediately runs to the the MUX
component which selects which motor is to be on at which times. This was duty was shifted to a
proto board off of the schematic, due to the positioning of the MUX on the board being unable to
handle the current load of the power supply. After reaching the motor select the circuit would
lead into the control of the output via BJTs. These can be thought of as switches which require
an external voltage to turn them on. The BJTs were taken off of the board entirely, due to the fact
that they were limited by the voltage that was supplied to turn them on. To remedy this issue,
relays were used to replace these on the same proto board used for the MUX. A relay is also
similar to a switch but requires more inputs and is more bulky and allows for better current to
flow through the circuit. This portion of the circuit only has the switch on when the signal
controlling the switch is high, which means that with a pulse width modulation controlling the
input, the duty cycle being sent to the output can be adjusted. Following the output control is the
output’s direction control. This is controlled by an H-bridge connected to the SmartFusion,
giving it the ability to determine which motor output is considered ground or power. Many
believe that they can simply make an H-bridge themselves with the correct components, but it is
a complex system which requires specific devices. The H-bridges currently being used on the
design can only handle 1 amp of current, before they begin to fry. Finally after running through

these important components the output can be hooked up to the motors, in the configuration
previously mentioned.

Status of Planned Features (WBS)

Chassis
The three syringes are mixed in a T formation. Thus, a T-formation base is required to hold the
whole device.The holders and the base can be designed on SolidWorks. The team got the design
paper with some help from mechanical students. Our team use 3D-printer to create the holders.
This part is almost the mechanical part in our project. The final step is to adjust the distance
between each actuators.

Circuit
It contains the parts shipped, parts received, Eagle’s using, simulation, breadboard connecting,
and soldering. Design the circuitry to control the actuator selection, actuator direction selection,
and vary the actuator speed, the circuit part is important in the project, and it contained two
subsystem to drive input and display. At the beginning, it is necessary to build a text-circuit first.
After we finished the circuit layout in Eagle, we made a PCB board to achieve its function.
Soldering is based on breadboarding, components soldered from DIP packages onto PCB.

Software
It contains created PWM, relay, H-bridge, timers, and the trouble shooting. Eagle and all codes
work is the main necessity for this part. It controls the microprocessor to drive the whole system
automatically. Our team choose SmartFusion Eval2, it has peripherals already mounted in the
top.

Hardware
It contains actuators, button pad, and display screen. The actuators are used for driving syringes
with linear motion. The button pad is used for users input information, and the screen can show
the final information when the equipment finished mix.

The microprocessor used in this design is called the SmartFusion. SmartFusion is an System on
Chip (SoC) microcontroller. This means it comes with all the tools necessary to develop the
system. It does an excellent job at sending and reading signals, generating PWM signals (Pulse
Width Modulation, which allows digital outputs to act like analog), and has a full FPGA right on
the board. It is coded in C# the goto to language for professional developers in embedded
systems. C has a bit of a learning curve however, as engineers we are already experienced in the
language. Libero is used to program the controller giving it an easy graphical user interface.
Thus the SmartFusion is an easy controller to use as well.

Figure 4: Smartfusion Board

Vincent:

Components
The parts that were initially ordered were based on the specification of a maximum of 1 amp
draw. This ended up becoming a problem later, the actuators that were needed by the end design
pulled up to 6 amps of current. Because of this, the redesigned circuit is going to use parts that
run a minimum of 20 amps of current through them. The new circuit submission would be for
another team to work on.

Circuitry

One the motor selection portion, the main job was assisting in breadboarding the mux and
finding current and voltage tolerances.

A current supply was added by taking advantage of a BJT (Bipolar Junction Transistor) current
gain. There was a current buffer circuit online that was tested, however it was dropped it due to
the convenience of buying a more powerful supply. Current buffer was eventually desoldered
from PCB.

The MUX (Multiplexer) was replaced a with relay and made a quick gate driver with inverters
to step up GPIO logic to 5V

Assisted with H-Bridges. Worked through the document for the Hbridges, pin configurations,
tolerances, and went through the process of wiring it. Then proceeded to test if Voltage flipped
when activated successfully.

Designed the PWM by using the FPGA on the SmartFusion board. This fabric component had
registers to take in period and negative edge trigger from the microprocessing unit via the APB3
bus. It then outputted corresponding signal to selected pin. This may then go into the gate of a
transistor to modulate power to motors. However in order to do so logic signal must be stepped
up to 12V to fully turn on transistor and did not have the resources to do such. Resources would
be an optocoupler, so 12 volts may be passed in and the 3.3V PWM signal could turn on and off
device.

The next step was to synchronize the motors by using on board timers then calibrating it to
switch motor directions once countdown stopped. To implement this, an interrupt was created
that when triggered would handle by switching motor direction.

Software

Software includes button pad, display, pwm, inputs and outputs, and motor mixing process.
Unfortunately things kept getting pushed and the Button Pad and Display functions are not fully
developed. However the skeleton for the software is written. The display code however was not
able to be completed, although it was done on breadboard. As the circuit kept failing due to
current limitations the software for the display and button pad never got picked up again.

Display

The 1602a display for the project was used with parallel asynchronous signals rather than SPI.
This was because it was found there were enough GPIO pins to support it. This made
implementing the display easier as to program it simply turned signals high per the data sheet.
However, as mentioned before after writing the skeleton functions for the code, it never was able
to fully implement it into the project as hoped. By skeleton meaning the basic functions such as

clear and write were written. However the display never gave user feedback due to time
constraints.

PCB and Soldering

There was also the responsibility for designing the PCB. The schematic for the MUX was done
so all that needed to be done is copy it over. Next was setting up the schematic, this included
laying out all the components on the board and wiring them, and finally exporting CAM files and
made sure PCB had no problems at manufacturing.

The board was modified it to allow more current. Modifications that were made include
replacing the mux with a relay, taking out current amplifier, and trying to wire muxes in parallel
to achieve 2A current rating. However the muxes were to small and the wires were causing
bridging so this was canceled.

Andrew:

H-bridge and MUX Setup and Integration
In the PCB design, the H-bridge and MUX were some of the more crucial design components to
make the actuators move in different directions and at different times. Testing the dip package
components before ordering them or putting them onto the PCB schematic, was the first priority.
The testing was completed, however it turned out that the dip package H-bridge on hand was a
half H-bridge which meant it was unusable. Due to self-imposed deadlines the order was
confirmed for an h-bridge component, before ordering a dip package replacement.

The implementation of the MUX and H-bridge were fully integrated into the Eagle schematic.
After being ordered however, the connections of the H-bridges on the PCB were found to be
incorrect due to an error in naming convention. To remedy this mistake, cuts and soldered wire
connections were made(detailed more in the troubleshooting section), to allow for the circuit to
work as intended. Additionally, the MUX was able to be implemented correctly.

Unfortunately, specifications were changed after the implementation of these components.
Currently, the MUX and H-bridge are not rated for the new specifications given. With the
specifications of up to 5 amps and 12 volts, it is believed that the VTS7960 H-bridge would be a
viable option when stepping up the current and voltage. This is necessary considering that the
current design can only handle 5 volts and 1 amp, while using the .

Button and Motor Communication
Motor communication, which has since changed to actuator communication, was a great success.
The motors have the ability to move back and forth, with the two linear actuators moving at the
same time and the third being able to move independently. The basic essential codes to run these
operations has been written, with more complex codes unaccomplished. Originally it was
envisioned that the code would take the user parameters and adjust the speed of the actuators and
timing based on the parameters. These codes were not written.

Button communication followed a similar vein, in that the button pad used was connected to the
device and could be read to. However, due to the involvement and interconnectedness with the
motor’s more complex communication codes, the implementation of multiple buttons went
unachieved. The design did manage to implement a start and stop button. The start button can be
activated so long as the mixing process is not in progress, and the stop button has the ability to
stop the process at any point in time along the process. The stop button, will actually exit the
code entirely, which may not always be desired if wanting to be run again.

Chassis
The working chassis for this design was built to meet most of its specifications. While, not fully
complete, it was able to function as a sturdy base for mixing, which was the main requirement.
An encasement for the circuitry was not created nor was there a stand for the button pad to be
held for user ease. All other specifications were met, with the ability to account for syringe size
adjustments using clamps to change the actuator position. The only revisions that could be made
to the current design, beyond those previously mentioned would be to make the system more
easily portable and make it easier for the syringe holders to be removed following a mixing
procedure.

Additional Work
Due to an unexpected parameter shift, caused by ignorance of mechanical properties, many of
the assignments within the project required extra attention. Mainly this dealt with the verification
and modification of the PCB circuit, at all points.

Colton:

Charge Pump
As stated in the WBS, all of these tasks were completed as planned. The first task is the charge
pump. This was then broken down into two parts, the simulation and the breadboarding. Under
the first iteration of our project, the supply was going to be a 5 volt source so to step up the
voltage if twelve volt motors were going to be used, the supply would need some kind of rails for
the op amp (operational amplifier) to get the voltage to work for 12 volts. The initial plan was
to have multiple charge pumps that fit multiple situations. After after proving concepts, the next
step was to use physical components to test. Both inverting the voltage for the negative rail while
also doubling the input voltage to bring it up and a positive rail, functioned as planned. After this
design though, the use of a different supply would would not need to use an op amp of any sort.
A different supply was used, as such this part was not need. While dropped from the final

design, the team wishes they had a 12 volt low current signal for turning on MOSFETS without
having the saturation current limit.

Buffer
The goal of the buffer was to avoid a potential problem in the design. The power supply would
have some sort of inherent resistance inside of it. If it were to attach the motors, which would
also have some resistance inside of them as well, a voltage divider may be created
unintentionally. In the case of a voltage divider, the motor would not be receiving the proper
voltage. So this buffer circuit was used both to combat that problem while also helping step up
the current going to the motor. In the end this too was pushed to the side, the better supply would
not need to step up the current. As for the voltage divider problem, it seemed to be a
non-problem. As such this circuit was not necessary.

EAGLE
The job was to help provide the schematics that had been simulated to EAGLE so that the PCB
could be set up. As the previous section stated, both of the above devices were not necessary to
have, so they were not included inside of the PCB. As such, the EAGLE portion of this WBS
amounted to nothing, but nevertheless complete.
Chassis
There needed some form of frame to be holding the design so that it would stay steading while
mixing the syringes. This meant that both the motors would need to be locked in as well as the
syringes. This did end up being completed but only for the actuators and the syringes, there was
not time to put the smartfusion or the PCB into some protective casing like initially hoped for.
The project went under a massive change which will addressed next.

The Redesign
The plan was to order the PCB before March, 19 so that it would come the week following when
the team was available to work again to effectively use the campus wide break. Because of this,
the PCB ended up being rushed out to meet the planned goal. The following week the client
informed that the design would not work even remotely for mixing the syringes. The circuitry
had been prepared expecting up to 12 volts and half of an amp of current. Instead, the client and
the mechanical engineers stated a pushing force around 20 pounds (25 pounds including a
safety factor) for pushing the syringes. The motors we had been testing with would only be able
to do a fraction of that. As such, almost all of the components purchased were not rated for these
operations. Because of this, the next step was looking through actuators. While looking for
solutions it was realized the PCB had errors in the wires connecting the parts. From there it was a
matter of cutting lines or soldering on wires for all of the errors on the board while also having
create a new circuit with the parts that currently owned, as recreating a PCB and getting parts
would stretch the budget as well as the time available. In the end this caused other plans to be

pushed while working on a functional solution. In the end, the project did not work due to the
parts not being rated for the actuators as well as running out of time.

During this whole process, since the previous activities were completed, new activities included
helping with the soldering and finding the errors in connections in the board. It was a processes
of taking three steps forward and then two steps back. The main process that took up a majority
of the time is that soldering onto a PCB takes time, and if solution did not work it was a matter of
desoldering and trying another potential solution.

Yunchen:

Two activities are involved in this part: Digital Circuitry and PCB design. As the WBS chart
shows, all the tasks were completed successfully without delay.

Motor/Actuator Selection

The first task is to design and partially build the control circuit. In order to mix the syringes, the
team needs a control circuit to select which actuator is needed at the moment. The actuator
should be controlled by peripheral software like SmartFusion Console. To begin with,
multiplexer is functional to switch and select signals.The team constructed and breadboarded it
with two buttons and two LEDs to test the function. After the function is verified, the team
hooked up the MUX with the SmartFusion. The only thing that can be considered as a challenge
was the code part. The team had difficulty writing the whole part but finally solved it. The code
on Console for our microprocessor to generate the logic outputs as switches of MUX were
completely written. In the process, PuTTy is a useful tool to test the results after debugging the
code. The combined circuit can select output signals with Console.

PCB Design

The PCB part is the one of the most important tasks of the whole project. It also can be broken
down into two sub-tasks: Schematic design and PCB layout.

The team tested the H-bridge circuit and created the library for the whole schematic design. First
of all, the list of the parts was confirmed and the team ordered them. Based on a draft of the
whole design. All the major components that were likely to be used have the libraries from
Digi-key except the female header. For the components whose libraries were provided by
Digi-key (like amplifier and H-bridges), the team downloaded the EAGLE CAD models and
imported them on the schematic. The header model which was another challenge for the team
because there was not a ready-made model for the connection of boards. Then all the
components were placed after the libraries were finished. The team wired them based on the
circuit design.

The second part was to lay out PCB. After the schematic was build, the team can be able to
create a board from it and optimally moved and rearranged the parts.Then the team routed the
board with automatic check. After everything was done, the PCB files was sent to the factory for
manufacturing and printing.

Follow-up work

After all the assignments were finished, the team started with the work that kept the whole
project moving. We arranged the syringe position on the base and found the optimal structure for
combining all parts. Almost all the follow-up work involved PCB alterations.

Handi:

This is the breakdown structure, it contains two parts, the digital circuit design and the analog
circuitry.

Motor/Actuator selection:

This part is used for the motor selection. Follow the client’s needs, this project should mix three
syringes, the team should choose which one to run. Team members choose motors at beginning,
but finally found that actuator can provide a linear motion, so the team chose to use actuators

replace motors. The first step is design circuitry, put the components on breadboard and be
familiar with their function. In this part the team used SmartFusion to control, and this
microprocessor board was used for change signals and timers, in order to drive the whole system
automatically. Team decided to use multiplexer to switch signals. The text part is to worked with
a team member, and built a breadboard with two LEDs and two buttons to text the selection
function. After the function is verified, team members hooked up MUX with SmartFusion board.
For the microprocessor, the team decided to use programming on Console to create the logic
outputs. When doing the code part, there comes some challenges, so members asked Vincent for
help. Finally, this part was finished.

Breadboard Buffer:

This part was created by two team members. The current source has internal resistance, but the
motors have small resistance, too. It is necessary to transfer voltage from high impedance circuit
to low impedance circuit to ensure the team can drive the motors. Team members simulated it on
LTSpice first, and created it on breadboard with op-amp. After those texting, our team connected
buffer and charge pump. At the end, this part was finished finished, but the voltage drive
problem did not as our team expected before. In our finished product, the breadboard buffer did
not show in it.

Current Source:

When the team do the breadboard buffer part, there had a plan to create the current source at the
same time. When team members simulated the buffer, the project was needed to build a current
source possibly. Each motor had rated current, so before the team changed the current value, the
current may be not the value that our team need. Our team chose to use LTSpice to simulate it.
However, the current source does not need at end. So this part did not show in the finished
product as well.

In conclusion, it is worth to do this project, this project contains almost all learning points. For
myself, the inadequacies is lacking of experience about how to complete a project before, so
always feel confused about how to do, what to do in the next step. Especially the programming,
the team considered it as the biggest challenge, but team members were all kind to help, all team
members are hardworking in their parts. Though the display part in the finished product is not
perfect as our team expected, this project is still a great progress for the team.

Future Improvements
As previously stated, there were things that should be changed or adjusted and will addressed in
this section.

In the appendix there will be included a new PCB that is crafted with the new knowledge of the
project. Superfluous parts of our previous design will be removed and new parts will be
suggested for replacement as they fit the new current and voltage levels that are for the actuator.
The schematic for this part will be inside a flash drive with most other information that will be
needed to start fixing the syringe mixer. Having another person to check over the schematic who
is familiar with EAGLE will be a good idea as while the schematic will be created to work,
minor mistakes may still exist. It is far more frugal to measure twice and cut once.

First part suggestion is for a new H-bridge. The BTS7960 H-bridge is a power motor controller
capable of handling up to 24 volts and 43 A, well above what this syringe mixer will be doing.
This suggestion is because the previous H-bridge that was used was only rated for 1 amp. With
the actuators running possibly up to 4-5 amperes this part was not only non-functional but also a
fire hazard.

Next is quality relay to be using. The G5LE relay is capable of handling up to 30 volts and 10
amperes. Again, these parameters fit well into the specifications for the actuators while the
previous could handle up to 2 amps which in most cases the syringe mixer will never reach but
pulling a part that close if never a safe idea.

Conclusion
We would like to thank Dr. Timothy Becker and ATI for sponsoring this project. We hope that
this device will fulfill their needs to automate the syringe mixing process to further develop and
understand the PPODA-QT liquid embolic method to ultimately bring it to human testing and
finally to the market. This has been wonderful learning experience for our team both with
communication as well as technical experiences.

Although we are heading out to our professional careers if there questions on the project, the
design, or any other questions please feel free to contact us at our emails on the cover page.

Best Wishes​,

The 3-Way Syringe mixing team.

Appendices:

The Display_NEW folder contains the PCB board schematic. Again it is suggested to check
connections on this new PCB to make sure everything is connected properly. The
MotorControlCapstone contains all of the code that we used for the project inside of
SoftConsole. The STL files contain the 3D parts that were attached to the base to hold the
syringes and interface with the actuators. Additionally, there is a parts list document detailing the
different parts to be used within the newer schematic.

This is the PCB board layout that is currently being worked on. This should include all changes
that were done on the previous board as well as removing all unneeded parts.

References:
● Microsemi. (2017). SmartFusion Evaluation Kit. [online] Available at:

https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion/smartfusio
n-evaluation-kit#documents [Accessed 13 Oct. 2017]. (Picture of the SmartFusion)

