SECSIMPro Script Editor
for Intel
Proposal Document
[image: image1.png]ENSCRYPT

Brian Crampton, Eric Miles, & Yoshani Thiruvilangam

December 13, 2001

Table of Contents

iiiList of Figures

iiiList of Tables

11. Introduction

22. Problem Statement

22.1 Background

22.2 Business Issues

32.3 Value of a Technology Solution

32.4 Competitive Products

32.5 Business Environment

43. Solution Statement

64. Requirements

64.1 Goals

64.2 Functional Requirements

74.3 Performance Requirements

74.4 Constraints

74.5 Business Philosophy

74.6 Specifications

85. Cost/Benefit Analysis

85.1 Estimated Life Cycle Costs

85.2 Tangible Benefits

85.3 Intangible Benefits

96. Risk Assessment

96.1 Risk Details

136.2 Risk Overview

147. Organization and Management

147.1 Team Individual Roles

147.2 Project Management

158. Design Development

158.1 Design Methodology

168.2 Deliverables

179. Resources & Schedule

179.1 Needs

189.2 Schedule

1910. The Technical Concept

1910.1 Preliminary Design

2010.2 Feasibility

2211. Conclusion

2312. Appendix A: Table of Acronyms

2413. Appendix B: Resources

List of Figures

4Figure 1: SML and SSL Design Process

5Figure 2: Sample Screen Shot

15Figure 3: Continuous Improvement Plan

18Figure 4: Project Schedule

19Figure 5: High Level Architecture View

List of Tables

9Table 1: Risk Analysis Descriptions

13Table 2: Risk Analysis Overview

14Table 3: Work Load Assignment

17Table 4: Project Cost

1. Introduction

Intel is one of the leading corporations developing technology in the computer and Internet field, with products ranging from processors to Internet server storage controllers. For this project, we will be developing software to support the components automation systems division, which is responsible for creating software to control the tools that manufacture semiconductor products. In order to create the scripts to control the tools, Intel currently uses an inefficient and tedious hand-scripting process. The overall objective of this project is to design a software tool to generate these scripts.

The goals of this document are to provide:

1. A statement of the problem and our proposed solution

2. An overview of the requirement specified by the client

3. Specific project details such as costs, team organization, resources, and schedule

4. A risk assessment of our project

5. A preliminary discussion of our proposed design project

2. Problem Statement

2.1 Background

Intel is known for creating semiconductor memory devices, i.e. chips. Intel makes its money by creating chips for people who need them: distributors, original equipment manufacturers of computer systems and peripherals, PC users who buy Intel’s PC enhancements, and makers of industrial and telecommunications equipment (www.intel.com).

The technology involved in the chip manufacturing process has increased dramatically within the last decade. The chip fabrication process has evolved from a human interaction process to a completely automated one, using high-tech tools and machines.

An ‘automations specialist’ is responsible for designing software to control these manufacturing tools. SECSIMPro is the standard software created by GW Associates that is used by many companies to compile SECS Message Language (SML) and SECS Script Language (SSL) files to be used in the testing and controlling of these tools.

Currently at Intel, all SECSIMPro (SSP) scripts are hand-written, which is a tedious and time-consuming process. In order to expedite the script creation/test process, Intel would like to have a graphical script-editing tool that can be used to easily create SML and SSL scripts.

2.2 Business Issues

As with most chip manufacturers, the main goal of the Intel Corporation is to make money. To do this, Intel needs to get its chips out on the market before other companies. The following ordered list outlines Intel’s money making strategies:

1. Increase the speed of chip production

2. Reduce the production costs

3. Create chips with the desired functionality

4. Create faster chips

5. Create reliable chips

6. Create smaller-sized chips

7. Create chips with reduced power consumption

Since increasing the speed of production is the most important step in making money, automation is a crucial competitive factor for Intel.

2.3 Value of a Technology Solution

In order to create automation tools, Intel relies on the SECSIMPro proprietary languages, SML and SSL, for their automation tools. The goal of this project is to provide software that supports easy, automated creation of these files much faster than the current handwritten method.

Using the software utility we propose to build, the client would no longer need to worry over the details of the syntax of the language and handwriting all the required code. We estimate that the development of this project will reduce time required to create these scripts up to 70%.

In addition, the time spent by handwriting these scripts is costing the company money and resources. By decreasing the time necessary to generate the SML and SSL files, the company would be decreasing the production costs, which effects Intel’s second most important money making priority.

Even though the result of the project will not directly contribute to any of the remaining priorities, by reducing the amount of time required to generate SML and SSL files, an employee can focus on more profitable tasks.

2.4 Competitive Products

According to our client there are no competitive products available for this project. This concurs with our research effort, as we were unable to find any material on this topic.

We identified the following to be possible reasons for the absences of any competitive products

· Not essential – This product is not required to complete the task of creating tool software.

· Copyright issues – The development of a marketable software product that develops SSL and SML scripts might infringe with the copyright of GW Associates, Inc.

· Time and cost issues – Companies might not have the time and money to spend on this type of development project.

· Unconsidered idea – There is a possibility that this idea has not been thought of yet.

2.5 Business Environment

Since hardware technology is constantly advancing, the types of SML and SSL scripts used for testing must change over time. Even though additional messages are being constantly added to SML and SSL, the general purpose GUI would be able to adapt to these revisions. Even though the demand for this product is not particularly high, it would be extremely useful. This product may also be advantageous for other companies currently using SML and SSL.

3. Solution Statement

In order to understand the purpose of our project, first let us look at the process Intel currently uses to develop SML and SSL files. An automations specialist, such as our client, must develop SML and SSL files to communicate with the manufacturing tools. When creating these files, a specialist must first research the available messages for the tools and then develop the necessary scripts. This process is estimated to take seven days to create an initial script.

With our product, we estimate that the design process can be accomplished in approximately 2 days. Figure 1 shows both processes.

[image: image4.png]e R

(. i)
nt

[image: image2.png]SML and SSL Design Process

4 Research, Developmem and Time | ‘

Figure 1: SML and SSL Design Process

We envision a full scale SML and SSL editor that completely replaces the SECSIMPro editor. In order to fulfill this vision, we propose the following 3-phase design process:

Phase I - Basic Requirements

· Load messages from standard library

· Modify previously created messages

· Create user defined messages

· Generate SML and SSL scripts that are syntax error free

Phase II - Additional Functionality

· Loading SML and SSL files for modification

· Generating PRO files

Phase III - Advanced Requirements

· Performing algorithm verification on SSL files

· Provide a language parser to verify semantics

· Creating purely compileable SML and SSL files

Due to the lack of time and extensive nature of this project, we only anticipate finishing Phase I. This will provide the client with a fundamental starting point in which further advancements can be made in the future.

Although we have not yet committed to a specific design, Figure 2 illustrates how the proposed utility might look and function. When the program starts, a full list of available messages will be displayed in the messages list box. The user will be able to add a particular message to the generating script by highlighting a message and clicking the transfer button.

Figure 2: Sample Screen Shot
4. Requirements

4.1 Goals

The overall goals of this development effort are as follows:

· Easy to use Graphical User Interface

· Create SML and SSL scripts

· Ease of adding new messages with evolving technology

4.2 Functional Requirements

The following is a list of specific high-level functional requirements for Phase I that the client has requested from our team.

1. The program must be able to create SML and SSL scripts.

· The program must be able to save scripts to a file.

· The program must be able to edit currently created SML and SSL scripts.

· The program must be able to update SML and SSL fields.

· The program does not have to load a file.

· The program does not have to compile scripts.

2. Program must be able to obtain all possible messages.

· The program must get standard messages from a specified location.

3. Program must display messages and current script.

· A textbox will show the current available messages.

· A textbox will show the currently generated script.

4. The program must have the following behaviors:

· Load available messages on startup

· Wait for user to select messages to add

· Add message when user selects ‘Transfer’

· Display current script file

· Popup window when user clicks on modifiable field in the script

· Update user defined fields

· Save created script files when user clicks save

5. Product should have an indefinite lifetime

· Product must not time out.

· Product must be able to continuously function as long as necessary, while the system is properly running. (i.e. no power outage)

4.3 Performance Requirements

Given below is a summary of the performance requirements.

1. Program should be reasonably fast (assuming a 700 MHZ processor)

· The program must load within 5 seconds

· The program must load all available messages within 10 seconds

· The program must add messages to SML files within 2 seconds

· The program must add messages to SSL within 2 seconds (after utilizing the wizard)

· The program must save file within 2 seconds

2. Program should run with no errors.

· The program must not terminate due to run-time errors.

· Program must not contain internal logical errors.

· Program must perform desired functionality.

3. Program should not consume excessive memory

· Program should not consume more than 15Mb RAM

Program should resemble a standard Windows application

· Program must contain standard menu and tool bars.

· Program must contain standard textboxes and user buttons.

· The program must be a standard executable file.

4.4 Constraints

The following constraints were given for this project.

· Program must run on Windows NT/2000 environment

· Program will be written in Microsoft Visual C++

4.5 Business Philosophy

Intel has a standard for well-documented source code. For this program, the source code must uphold to the Intel standard. In addition, and scripts created by the program must also be well documented.

4.6 Specifications

There are currently no formal standards, formats or specifications that we must adhere to.

5. Cost/Benefit Analysis

The main goal of the Intel Corporation is to make money. The key factor for Intel to accomplish this goal is to increase the speed of producing chips. Intel needs to get their chips out on the market before any of the other competitors do. This project will be a direct contribution in helping Intel achieve this goal by allowing the developers in automation systems a way to create the scripts faster, easier, and much more efficiently.

5.1 Estimated Life Cycle Costs

Since this product is intended to be a standalone, maintenance free program, we expect that this product will have a zero dollar cost for maintenance and further development over the next three to five years. However we have identified the following possible additional costs after the product is complete:

· Cost to add additional functionality to software (i.e. Phase II and III)

· Adding a new type of message

· Allow for different type of message technology

5.2 Tangible Benefits

By doing away with the handwritten method of creating scripts to test and control tools, approximately five working days will be saved per newly created script. These employees will be able create more scripts in the same amount of time, therefore increasing the speed of production.

The process of creating handwritten scripts is costing Intel time and money. The Through the use of our product, Intel will be able to decrease the production costs by reducing the design time of SECSIMPro files.

Another tangible benefit is that Intel will not have to spend as much time and money on training newer employees the SECSIMPro languages. This project will remove necessary knowledge on SSL to create these scripts.

Because the time is severely reduced in creating the scripts an intangible benefit towards Intel is that they can spend the time gained on different tasks. They will have more time to focus on tasks that are more profitable for the corporation.

5.3 Intangible Benefits

Since the SECSIMPro languages can be cumbersome to hand-write, the use of the SECSIMPro script editor will benefit the employees by saving them the frustration of this process.

6. Risk Assessment

6.1 Risk Details

This section gives an overview of the risks we have identified for this project. Each specific risk is analyzed below for the characteristics, avoidance strategies, and monitoring method. Section 6.2 gives a summary of the risk assessment details.

	Risk
	Risk Type
	Description

	Learning SSL, SML and SECSIMPro
	Project/Product
	Inability to learn the necessary material will determent the project

	Obtaining varied scripts from client
	Project/Product
	Client does not provide all necessary example scripts

	Major requirements change
	Project/Product
	Client changes requirements unexpectedly or requirements were not understood properly

	SECSIMPro licensing issue
	Project/Product
	Inability to continue using SECSIMPro would halt the process of development

	Technology change
	Business
	Manufacturing tools adopt new technology: no longer use SECSIMPro

	Product competition
	Business
	Another company develops a product that accomplishes our project goals

Table 1: Risk Analysis Descriptions

Risk 1: Learning SSL, SML and SECSIMPro

Characteristics

Currently none of our team members know any of the technologies listed for this risk; all of these are required for the development of this project. The likelihood of each member of our team not investing time to learn these is very low. However the effects of this risk occurring would be catastrophic. This risk could occur if any team member does not commit to the learning process.

Risk Avoidance Strategies

In order to avoid this risk, the team could divide the learning load into individual portions. The team would be responsible to hold each team member accountable for the information they were supposed to learn. In the case of a member not doing their share, the remaining team members would have to fill their weight. The event would be documented against the slacking person.

Risk Monitoring

Through weekly team meetings, members can share what they learned during the previous week. New research assignments can be made during this time.

Risk 2: Obtaining varied scripts from client

Characteristics

In order to correctly produce the files, we will need at least one example of each major type of script. We feel that the chance of this risk happening falls in the moderate range. If this event occurs the effects would be serious, because the product would be flawed. Something like this might happen if our team overlooks an important script attribute that was not seen in provided sample scripts.

Risk Avoidance Strategies

This problem can be avoided with frequent interaction with the client. Providing the client with prototypes early in the semester would allow him to supply feedback regarding any problems. By creating a program that is sufficiently abstract, we can minimize the effects of flaws caused by this risk. For example, if a certain script feature is overlooked, the program will still be able to generate a functional script. This risk pertains mostly to the creation of SSL scripts.

Risk Monitoring

Excessive confusion on script functionality between the client and the team may be an indicator for this risk.

Risk 3: Major requirements change

Characteristics

After having gathered the requirements for the project, we have developed a strategy for solving the problem. Significant changes in the requirements statements will change all of our development plans. The possibility of this occurring is very low. We are confident that we understand the client’s needs. Results of a major requirements change can range from insignificant to catastrophic, depending on the time remaining as well as the degree of change. This type of occurrence could happen in the case of the team misunderstanding what the client wants or if the client is himself unsure as to what he expects from the program.

Risk Avoidance Strategies

Frequent and open conversation with the client will reduce the chance of having a miscommunication. Additionally, providing the client with a working prototype will demonstrate our ability to meet the client’s requirements. Having well documented deliverables that have been approved by both the client and our team will protect our team in the event of a miscommunication.

Risk Monitoring

Multiple requirements change request from the client or overall client dissatisfaction might be an indicator for this risk.

Risk 4: SECSIMPro licensing issue

Characteristics

The SECSIMPro program is a licensed program. However there is a demo version available that will work for 100 messages or 10 compiles. At this time, the demo license will expire. The client has stated that they will not be able to provide our team a license. In order to avoid purchasing a license, we plan to continually re-install the demo software. In the event we are unable to continue using the demo software, the effect would be catastrophic to the project. However, we feel that the possibility of this risk occurring is very low.

Risk Avoidance Strategies

If we are unable to use SECSIMPro on a particular computer, we have a large supply of computer resources available in the Engineering Department. If it happens that we are unable to continue using SECSIMPro on all of the available resources, we will have to rely on the client for a solution. Otherwise, the project will be a failure.

Risk Monitoring

During the very early stages of the design process, we will be able to determine if this risk is even applicable. If it is, we will begin researching for a solution immediately. However, from current use of SECSIMPro, we are extremely confident this will not be an issue.

Risk 5: Technology change

Characteristics

Technology in today’s world is constantly changing. Because of this, it is possible that the technology used in the automation industry may change. In the event that the technology used by the Intel Corporation migrates from the SECSIMPro foundation, the use of our project would become non-existent. Large changes in technology do not usually occur instantaneously. Therefore the probability of this risk is very low. However, if by chance a major technological revolution were to occur, the results would be catastrophic to our project.

Risk Avoidance Strategies

If a major technological change is about to occur, there is really no way our team can avoid the outcome. The project would be a failure.

Risk Monitoring

To monitor if such a risk is about to occur, we could monitor technical publications as well as converse with the client.

Risk 6: Product competition

Characteristics

As stated previously, there is currently no competing software available that performs the same functionalities as the clients needs. If some company were to launch a new software tool that performed the same purpose as our proposed project, we would potentially suffer from the new product competition. Since SECSIMPro is a standard used by virtually all semiconductor chip manufacturers, it is likely that another company (especially GW Associates) may produce this type of product. Therefore, we rate the probability of this risk at moderate. Depending on the functionality, cost, and availability of the competition software, the results could range anywhere from insignificant to catastrophic.

Risk Avoidance Strategies

There is really no way to avoid the effects of a software competitor. If this event did occur, the only thing we could do is to try and pitch our application as either being better, cheaper, or more readily available than the competitors software.

Risk Monitoring

In order to make sure we have enough warning to potential competitor products, we could make a point to regularly do research regarding this topic.

6.2 Risk Overview

Even though the impact of all of our risks could potentially be at least serious, the probabilities of all of our risks never exceed the moderate level. Therefore, it shows that even though the risks can have a high level of impact, it is very unlikely that any of these risks would ever occur. Additionally, the avoidance strategies for each risk, if followed, should further reduce the possibility of risk occurrence. Table 2 below gives a summary of the risk assessments discussed in this document.

	Risks
	Category
	Probability
	Impact
	Avoidance Strategy

	Not learning SSL, SML and SECSIMPro
	Project/Product
	Very Low
	Catastrophic
	Divide learning work load amongst team members

	Obtaining varied scripts from client
	Project/Product
	Moderate
	Serious
	Frequent interaction with client

	Major requirements change
	Project/Product
	Very Low
	Insignificant to Catastrophic
	Frequent interaction with client

	SECSIMPro licensing issue
	Project/Product
	Very Low
	Catastrophic
	Use additional hardware resources

	Technology change
	Business
	Very Low
	Catastrophic
	N/A

	Product competition
	Business
	Moderate
	Insignificant to Catastrophic
	Pitch our product as superior

	Probability Ranges: Very Low (<10%), Low (10-25%), Moderate (25-50%), High(50-75%), Very High (>75%)

Impact Levels: Catastrophic, Serious, Tolerable, Insignificant

Table 2: Risk Analysis Overview

7. Organization and Management

7.1 Team Individual Roles

For the design portion of the project, we have divided the roles according to each of the main architectural components. A detailed description of the architectural components and who will be working on them is provided in Table 3 below.

	Architecture Component
	Person Assigned to Task

	Message Loader
	Brian and Eric

	SML Generator
	Brian and Yoshani

	SSL Generator
	Brian, Eric, and Yoshani

	Field Wizard
	Brian, Eric, and Yoshani

	Save Mechanism
	Eric and Yoshani

Table 3: Work Load Assignment

As a team, we decided that we did not want one person to be solely responsible for any one section of the program. So when deciding how to divide up tasks, there is at least two people on each assignment. Since the SSL Generator and the Field Wizard will be the most difficult to implement portions of the program, all members will be responsible for contributing to those sections.

7.2 Project Management

In order to make sure the project is progressing as scheduled, the team will be required to meet at least once a week. At this time, all team members or group will be required to orally give their status on the tasks that they were assigned at the previous meeting.

At this time, it would be the ideal situation that the person or group had completed all portions of their tasks as assigned. However, in the event the person did not complete their tasks, the team will have a discussion on the reasons for the incompletion and make a practical decision on the next course of action. The possible outcomes in this situation can be one of the following:

· Permit the person an extension, specify the next due date.

· Assign additional persons to aid in the specified task.

· Reassign the task to a different person.

· Abort the task as no longer important for the project.

The final decision will be voted upon using the team’s 2/3-majority vote rule.

8. Design Development

8.1 Design Methodology

Our client has requested that we develop our project according to a Continuous Improvement Plan. Using the initial requirements the client has given us we will implement a prototype and test it for functional validation. Upon successful testing and if time permits we will start designing and implementing and additional requirements our client has at that time. If we do not have time to do so, our team will recommend to the client some future additions that will beneficial for Intel. Figure 3 shows the process of the Continuous Improvement Plan we will be following.

Figure 3: Continuous Improvement Plan

We were given an initial outline description by our client from which we acquired the requirements and agreed upon them. During the design phase we will develop specifications for our project and implement our design accordingly. The implemented software will be tested for validation. Upon successful validation, this prototype will be considered as our initial version. Based on the initial version further intermediate versions will be developed and validated similar to the initial version. After further additions of requirements from our client we will develop the final version.

This process is much more effective than the Waterfall model and will meet with the immediate needs of the client. This will also give our client a better understanding of their problem

8.2 Deliverables

We have based our milestones on the deliverables we will be providing the client. All deliverables will be presented to our client as a form of agreement and will be revisable by the team ENSCRYPT if necessary. The deliverables that will be submitted are given below:

· Project Proposal Document

This document was submitted to the client on December 14, 2001 as a hard copy. Our client made a few revisions to the document

· Functional Specifications Document

We will be providing our client with functional specifications of the software we will be implementing in the Functional Specifications Document. This document will be submitted to the client on January 31, 2002 as a hard copy.

· Complete Prototype

As a form of usability testing and functional validation of our product we will be giving our client a prototype of our implementation. The software of the prototype with user manual will be given to the client on March 22, 2002.

· Complete Project

We will be completing our project by April 25, 2002. The complete software and documentations will be submitted to the client for use.

· Capstone Presentation

On April 26, 2002 we will be making a formal presentation about our project to our client. This presentation will be accompanied with the As-built document in form of hardcopy.
9. Resources & Schedule

9.1 Needs

For the development of this project, our team has identified a short list of critical hardware and software that will be necessary to complete the design project. These items are:

· The SECSIMPro Software

· At least one workstation equipped with:

· Windows NT/2000

· Microsoft Visual C++

Our team has already been informed on how to obtain the Demo SECSIMPro software. For the workstation needs, the Northern Arizona University College of Engineering contains multiple computers that meet these requirements and will be available for our use.

The budget for this project has been divided into two sections: real world costs and actual costs. Both of these costs are summarized in Table 4 below.

The budget figures for time and labor were calculated using a $50.00 per hour wage, at 10 hours a week, for 13 weeks, for 3 people. Since our client provided all of the learning material, there is no cost associated with this cost. We plan to visit the client 3 times during the project lifetime, which is $75.00 a trip for a total of $300.00. The cost of printing and sending materials to the client is estimated at $100.00. For an estimated 2 hours of telephone communication we estimated $12.00 worth of charges. Finally, for any extra costs that might arise, an additional $75 is added to miscellaneous costs.

As shown in Table 4, the total real world costs for this project would have come to a total of $3,607.00. As a design for practice project, the total actual cost for the project comes to $487.00.

	
	Real World Costs
	Actual Costs

	Time and Labor
	$ 19,500.00
	$ 0.00

	Learning materials
	$ 0.00
	$ 0.00

	SECSIMPro License
	$ 4,500.00
	$ 0.00

	Traveling expenses
	$ 300.00
	$ 300.00

	Printing/Sending Materials
	$ 100.00
	$ 100.00

	Communication
	$ 12.00
	$ 12.00

	Miscellaneous Costs
	$ 75.00
	$ 75.00

	Total
	$ 24,487.00
	$ 487.00

Table 4: Project Cost

9.2 Schedule

For the Spring 2002 semester we propose that we will be working on our project according the schedule given in Figure 4.

[image: image3.png]2002

o Tosh e St o | v | urain
| FomalFurcion pesfostons et | 142z | 1612 | 18
2 | S st et e | e | o
3 implomarsaintress oo | o | o
N e || o
- e | oo | o
- e || e
7 e o | e | e
e o | o | o
s EEAEEANS
o gt o RG]
1 Pty sumea ot o | s | o
2| Corptte et o || e
Pt et o | aeea |
- oo | a0 o

Figure 4: Project Schedule

The first item we will be working on is the formal functional specifications document. This document will provide a detailed account of how we will build the project. We plan to submit the design document on February 1st 2002

The next major phase will be implementation, beginning in early February. The implementation phase is divided into five portions, one for each architectural component. Each portion is scheduled to occur at different times during the implementation phase, with some phases overlapping others. See Figure 4 for complete details.

After this phase we will start working on the integration and testing of our system, which will end on the 21st of March 2002 with a prototype being submitted to the client. After the client reviews the prototype we will work on the final refinement of the project.

The last few weeks of the semester we will finalize the documentation for this project and prepare for the Capstone presentation, which will occur on the 26th of April 2002.

10. The Technical Concept

10.1 Preliminary Design

As discussed in previous sections, we envision our product working by performing the following operations:

1. Load available messages from a predefined location

2. Allow user to select whether to generate a SML or SSL type file.

3. Allow user to add and modify messages added to an SML file

4. Activate a wizard to help generate an SSL file.

5. Save the generated files.

Based upon these basic functionalities, we have divided our architecture into five different components. These component will be called: Message Loader, SML Generator, SSL Generator, Field Wizard, and Save Mechanism. A high level architecture diagram of our proposed design is shown below in Figure 5. The description and feasibility of each component will be discussed more thoroughly in Section 10.2 below.

Figure 5: High Level Architecture View

10.2 Feasibility

Our envisioned architecture has five different components. All components will be written in Visual C++. Given below are these components with their description and feasibility analysis:

1. Message Loader

Description

All currently available SML messages will be stored in a library outside the program. When the program starts, all available messages will be loaded as a library into the program. The Message Loader will parse the messages library file, picking out each message and its attributes and storing them into a message object. The program will then use these message objects.

Feasibility

Overall, this seems like a feasible task. All that will be involved is parsing a text file and instantiating message objects.

2. SML Generator

Description

This component will enable the user to generate SML files by adding messages to the corresponding script that’s being built. An SML file is simply a file that contains a collection of SECSIMPro message scripts. This SML file can be compiled by SECSIMPro and be used to directly communicate individual messages to a tool. All this portion of the program will do is to transfer user selected SML messages into a SML file. The algorithm for this component will take the object attributes and insert it into the appropriate fields.

Feasibility

The development of this component seems feasible because all it does is load a selected message into a file without any manipulations to the message at this point.

3. SSL Generator

Description

The SSL Generator is more involved than the SML Generator. An SSL file is a script that is used to run several SML messages in a programmed sequence and can be complied by SECSIMPro. The SSL Generator will keep track of and update all the necessary variables when additional messages are added. The SSL Generator will rely on the Field Wizard.

All messages that are added to a SSL file needs to be tracked in order to generate the corresponding SML file. This is the only information that will not be provided by the Field Wizard.

Feasibility

The actual programming of this component is feasible but the success of this component relies on the Field Wizard.

4. Field Wizard.

Description

This will be the most involved portion of the project. The Field Wizard will be responsible for making intelligent decisions for the making of SSL files. For SSL script generation, we will be only implementing a specific type of SSL file template. When the user adds a SSL message the Field Wizard will launch, prompting the user for all necessary information to update the script file. Given below are the functionalities of the Field Wizard:

· Select which control block in the SML to load the new message

· Fill in necessary activation conditions

· Update/set variable names

For this component we will be creating a complex algorithm to organize all of the user input fields to appropriately modify the current script.

Feasibility

Filed Wizard is the most difficult component to implement. In order to get the bare minimum functionality this component will be accomplishable. However, if we desire to accomplish a wide variety of script editing functionalities, this poses a larger challenge to our project.

5. Save Mechanism

Description

This component will provide a mechanism to save the generated SML and SSL scripts into files. This section will take the created strings and output them to .sml and .ssl files. The user will be able to specify the location and name of the file of the files.

Feasibility

This component by far will be the easiest to implement. We have experience with file input/output.
11. Conclusion

Intel is a major company that has advanced in the fabrication automation process. But we feel that hand scripting is a major weakness in this design process. Our product could help eliminate this weakness and yield higher profits for Intel. Furthermore, the great low price of this product will more than pay for itself with the future return on the initial investment.

After careful analysis of the product requirements, it is the opinion of ENSCRYPT that this project could be completed successfully. It is our suggestion that the Intel Corporation should proceed with this project.

Team ENSCRYPT is ready to start this project. We eagerly await your approval and look forward to pursuing the next stages of development.

12. Appendix A: Table of Acronyms

	GUI
	Graphical User Interface

	SECS
	Semiconductor Equipment Communication Standards

	SML
	SECS Message Language

	SSL
	SECS Script Language

	SSP
	SECSIMPro

13. Appendix B: Resources

SECSIMPro Software Link: http://www.gwa.com/products/secsimpro.htm
ENSCRYPT Website Link: http://www.cet.nau.edu/~emm4/intel
ENSCRYPT E-mail: emm4@cet.nau.edu
� EMBED MSPhotoEd.3 ���

Validation

Development

Specification

Initial Version

Final Version

Intermediate versions

Outline Description

Concurrent Activities

(proposed software)

≈ 2 days work time

(Intel’s Current Method)

≈ 7 days work time

ENSCRYPT�SML Editor

Specialist

Finished Files�(SML and SSL)

Save�Mechanism

Field�Wizard

Message�Loader

SSL�Generator

SML�Generator

Editors

Message Loader: Parses available messages from a library file into objects.

SML Generator: Generate SML files using an algorithm to take message object attributes and insert them into appropriate fields.

SSL Generator: Keeps track of necessary variables when additional messages are added.

Field Wizard: Makes intelligent decisions for the

making of SSL files. Prompts the user for necessary information to update the script file. Organizes all of the user input fields to appropriately modify the current script.

Save Mechanism: Saves the generated SML and SSL

scripts into files into .sml and .ssl files.

PAGE

_1069690321

_1068222082.bin

