
US Software Capstone Design Project

GNAT - Graphical Network Analysis Tool

Detailed Test Plan

Design Team:

Matt Ericson

John Kobinski

Matt Petro

Rob Waltz

Client:

Rich Ames, US Software

v1.0

February 27, 1998
Last revision: 2/27/98
 TC \n TABLE OF CONTENTS
EXECUTIVE SUMMARY
2
UNIT LEVEL TESTS
3
Gnat
3
Statistics Module
7
Display Module
14
Snoop
18
ParsePacket
19
Checksum
20
PassPacket
22
RetransPacket
22
Packet List
23
ZeroWindow, Retrans
26
Connection List
28
Find Connection
30
Connection List
31
INTEGRATION & SYSTEM LEVEL TESTS
33
Black Box Test Plan
33

EXECUTIVE SUMMARY

This document covers the test plan for ensuring the correct functioning of the GNAT software. Included in this plan are analyses of both white box and black box testing. For white box testing, plans for invocation, branch, loop and condition coverage testing for all major functional units are presented. For black box testing, equivalence partitioning and boundary analysis for all input data is discusses. Additionally, the data necessary to perform all tests is presented.

All code listed in this document is pseudocode, not actual Java. This facilitates an understanding of the algorithms without requiring the reader to understand the nuances of the Java language. Also, the structures and objects referred to in this document are fully described in the GNAT design document. This can be found on the GNAT World Wide Web site at http://www.cse.nau.edu/~synthesis/Path_to_Synthesis/EGR486/CSE/97-Projects/ussoftware/index.html.

UNIT LEVEL TESTS

Gnat

1) White Box Test Plan

a) Constructor

1) Pseudocode

1. Create main window and menus

2) Flow Diagram

[image: image1.png]Goga¥a

[image: image2.png]S

3) Branch coverage plan

This plan is trivial, as there is no branching in the constructor. To test the GUI, the software will be started and the appearance of the window and menus will be verified.

4) Branch coverage test data

None.

5) Loop coverage plan

Trivial. See branch coverage.

6) Loop coverage test data

None.

7) Condition coverage plan

Trivial. See branch coverage.

8) Condition coverage test data

None.

b) Event Handler – makes the appropriate function call when a menu item is selected

1) Pseudocode

1. if (menucommand = Open)

2. verifySnoopfile(Snoopfile)

3. Snoop(Snoopfile)

4. else if (menucommand = Close)

5. close Snoop file

6. else if (menucommand = Exit)

7. terminate program

8. else if (menucommand = About)

9. display About box

10. else if (menucommand = Retransmissions)

11. display retransmissions statistics

12. else if (menucommand = Checksums)

13. display checksums statistics

14. else if (menucommand = General)

15. display general statistics

16. else if (menucommand = Sequence vs. time)

17. display sequence vs. time graph

18. end if

Note: This pseudocode will be within an event handler function. This function will be called to handle any action which involves a menu command (ie: any item in a menu is selected). Thus, this code will function as though it is within a while loop which executes one iteration only when the user performs some action.

2) Flow diagram

[image: image3.png]obo-d-d

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

[image: image11.png]

[image: image12.png]

[image: image13.png]obo-d-d

[image: image14.png]

[image: image15.png]Goga¥a

[image: image16.png]S

[image: image17.png]

[image: image18.png]

[image: image19.png]

[image: image20.png]

[image: image21.png]

Cyclomatic complexity = number of regions = 8

3) Branch coverage plan

Path1:
1,2,3,18

Path 2:
4,5,18

Path 3:
8,9,18

Path 4:
10,11,18

Path 5:
12,13,18

Path 6:
14,15,18

Path 7:
16,17,18

Path 8:
6,7

4) Branch coverage test data

The branch coverage data takes the form of a series of use cases, since the input in this case is a series of user actions. The following cases will be executed in the order in which they are listed.

Case 1:
User chooses to open a valid Snoop file

Case 2:
User chooses to close the Snoop file

Case 3:
User chooses to view the About box

Case 4:
User chooses to view retransmission statistics

Case 5:
User chooses to view checksum statistics

Case 6:
User chooses to view general statistics

Case 7:
User chooses to view the sequence vs. time graph

Case 8:
User chooses to exit the software

5) Loop coverage plan

Since there are no maximum values for the loops which will be taken through this section of code (ie: the user can choose any of the menu commands as many times as he or she would like), testing an upper bound on the loops is impossible. Therefore, the loops will be tested similarly to the branch coverage. Each branch through the code will be taken once, to verify that the loop operates correctly (ie: once the user has chosen a menu command and the command has finished, the software returns to its previous state of waiting for more input). Also, each branch will be executed twice in a row in order to verify that all functionality is repeatable.

6) Loop coverage test data

Test 1:
Same as branch coverage.

Test 2:
Same as branch coverage, but each branch will be executed two times in a row.

7) Condition coverage plan

Since the conditions in this section of code are very simple, the condition testing degenerates into branch testing. Thus, the branch coverage tests will be enough to verify that the conditional operators in the code are correct.

8) Condition coverage test data

Same as branch coverage

c) VerifySnoopfile(Snoopfile)

1) Pseudocode

1. open Snoop file

2. if (idpattern != “snoop”)

3. return badsnoopfile

4. if (versionnumber != 2)

5. return badsnoopfile

6. if (datalinktype != 0) &&

7. (datalinktype != 4)

8. return badsnoopfile

9. return goodsnoopfile

2) Flow Diagram

Cyclomatic complexity = number of areas = 5

Path 1: 1,2,3

Path 2: 1,2,4,5

Path 3: 1,2,4,6,7,8

Path 4: 1,2,4,6,7,9

Path 5: 1,2,4,6,9

3) Branch Coverage Plan

Path 1: Snoop file with bad identification pattern

Path 2: Snoop file with incorrect version number

Path 3: Snoop file with incorrect datalink type

Path 4: Good Snoop file with datalink of 0

Path 5: Good Snoop file with datalink of 4

4) Loop Coverage Plan

There are no loops in this section of code.

5) Condition coverage plan

Covered by branch coverage

2) Black Box Test Plan

a) Equivalence Partitioning

1) There is essentially no equivalence partitioning to be done in this module, as the input is user actions. Thus, the white box test plan will uncover any errors in the GUI and black box testing is trivial.

b) Boundary Value Analysis

1) Just like equivalence partitioning, BVA is trivial for this section of code. Since the input set is just the user’s menu selections, there are really no boundaries to test. Thus, BVA is unnecessary.

Statistics Module

1) White Box Test Plan

a) Unit 1 – Retransmission Statistics

1) Pseudocode

1. total = retransList.total;

2. percent = total / packetList.total;

3. packet = retransList.packetlist;

4. winarray = new int[total];

5. i = 0

6. while(packet.next){

7. avWinSize = winarray[i] = packet.next.windowSize;

8. avPacketSize=packarray[i++]=packet.next.packetSize;

9. packet = packet.next;}

10. avWinSize /= total;

11. avPacketSize /= total;

12. new DisplayRetrans(total, percent, avWinsize,

13. avPacketSize, winarray[], packarray[],

14. retransList.packetList, retransList.connectionList);

2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 4 – 4 + 2 = 2

Path1: 1,2,3,4,5,6,10,11,12

Path2: 1,2,3,4,5,6,7,8,9,6,10,11,12

3) Branch Coverage Plan

Path1
1
Empty Retransmission List : retransList.total = 0

Path2
1
Retransmission List with one packet: retransList.total = 1

4) Loop Coverage Plan

Loop 20 times = Retransmission list with 20 packets

Loop MAX-1 times = Retransmission list with 19999 packets

Loop MAX time = Retransmission list with 20000 packets

Loop MAX+1 time = Retransmission list with 20001 packets

5) Condition Coverage Plan

Covered in Branching

b) Unit 2 – Checksums

1) Pseudocode

1. total = checksumList.total

2. percent = total / packetList.total

3. new DisplayChecksums(total, percent,

 checksumList.packetList,

 checksumList.connectionList)
2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 1 – 0 + 2 = 1

Path1: 1,2,3

3) Branching Coverage Plan

Path1
1
Valid ChecksumList

4) Looping Coverage Plan

NO LOOPING

5) Condition Coverage Plan

NO CONDITIONAL CODE

c) Unit 3 - ZeroWindows

1) Pseudocode

1. total = zerowindowList.total

2. percent = total / packetList.total

3. new DisplayZerowindows(total, percent,

 zerowindowList.packetList,

 zerowindowList.connectionList)
2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 1 – 0 + 2 = 1

Path1: 1,2,3

3) Branch Coverage Plan

Path1
1
Valid ZeroWindow List

4) Loop Coverage Plan

NO LOOPING

5) Conditional Coverage Plan

NO CONDITIONAL CODE

d) Unit 4 – General Statistics

1) Pseudocode

1. if (packetList.size < 2)

2. quit();

3. packet = packetList.packetList;

4. startTime = packet.next.timestamp;

5. while(packet.next){

6. bytes += packet.next.packetSize;

7. packet = packet.next;}

8. endtime = packet.timeStamp;

9. traffic = bytes / (endtime – startTime);

10. throughput = (bytes – (stats.retrans.avpacksize *

 retransList.total) / (endtime – startTime);

11. new DisplayGeneral(traffic, throughput);

2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 8 – 7 + 2 + EXIT = 3

Path1: 1,2

Path2: 1,3,4,5,8,9,10,11 (Path 2 will never be taken because of condition in Path 1, if there are less than 2 packets, EXIT, if more, the loop will execute at least once)

Path3: 1,2,3,4,5,6,7,5,8,9,10,11

3) Branching Coverage Plan

Path1
1
Valid packet list with less than 2 packets

Path3
1
Packet List with 2 packets

4) Looping Coverage Plan

Loop 20 times = Packet list with 20 packets

Loop MAX-1 times = Packet list with 19999 packets

Loop MAX time = Packet list with 20000 packets

Loop MAX+1 time = Packet list with 20001 packets

5) Condition Coverage Plan

Covered in Branching

e) Unit 5 – Burstiness

1) Pseudocode

1. packet = packetList.next

2. while(packet.next){

3. starttime = packet.next.timestamp

4. if(!packet.next.next)

5. break;

6. endtime = packet.next.next.timestamp

7. bytes = packet.next.packsize

8. burstiarray[i] = bytes / (endtime – starttime)

9. bytearray[i] = bytes}

10. condense (burstiarray[], bytearray[])

11. new DisplayHist(burstiarray, bytearray, i)

2) Flow Diagram

Cyclomatic complexity: V(G) = E – N + 2 = 8 – 7 + 2 = 3

Path 1: 1,2,3,10

Path 2: 1,2,3,4,5,4,10

Path 3: 1,2,3,4,6,7,8,9,4,10

3) Branching Coverage Plan

Path 1
Empty Packet List

Path 2
Packet List with 1 packet

Path 3
Packet List with 2 packets

4) Looping Coverage Plan

Loop 20 times: Packet List with 21 packets

Loop MAX-1 times: Packet List with 19999 packets

Loop MAX times: Packet List with 20000 packets

Loop MAX+1 times: Packet List with 20001 packets

5) Condition Coverage Plan

Covered in Branching

f) Unit 6 – Sequence vs. Time

1) Pseudocode

1. packet = packetList.packetList

2. while(packet.next){

3. timearray[i] = packet.timestamp

4. sequencearray[i] = packet.sequence

5. packet = packet.next}

6. new DisplaySeqVTime(timearray[], sequencearray[], i)

2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 4 – 4 + 2 = 2

Path 1: 1,2,6

Path 2: 1,2,3,4,5,2,6

3) Branching Coverage Plan

Path 1
Empty Packet List

Path 2
Packet List with 1 packet

4) Looping Coverage Plan

Loop 20 times: Packet List with 20 packets

Loop MAX-1 times: Packet List with 19999 packets

Loop MAX times: Packet List with 20000 packets

Loop MAX+1 times: Packet List with 20001 packets

5) Condition Coverage Plan

Covered in Branching

2) Black Box Test Plan

This module will not be black box tested because it’s components do not interact. The units are grouped together because of their similarity, and not because they form a cohesive, co-dependent section of code. There are no internal function calls, so invocation testing won’t be performed either.

Display Module
1) White Box Test Plan

a) Unit 1 – Display PieChart

1) Pseudocode

1. for(int i = 0; i < size; i++){

2. newTheta += 3.6 * pieces[i].intValue();

3. switch(i%4){

4. case 0: g.setColor(Color.red);break

5. case 1: g.setColor(Color.yellow);break

6. case 2: g.setColor(Color.blue);break

7. case 3: g.setColor(Color.green);break}

8. g.fillArc(startx,starty,width,width,

9. (int)theta,(int)newTheta)

10. theta = newTheta}

11. show

2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 13 – 10 + 2 = 5

Path1: 1,2,3,10

Path2: 1,2,3,4,8,9,3,10

Path3: 1,2,3,4,8,9,3,5,8,9,3,10

Path4: 1,2,3,4,8,9,3,5,8,9,3,6,8,9,3,10

Path5: 1,2,3,7,8,9,3,5,8,9,3,6,8,9,3,7,8,9,3,10

3) Branching Coverage Plan

Path1: Function call with size = 0;

Path2: Function call with size = 1, and input array with 1 valid cell

Path3: Function call with size = 2, and input array with 2 valid cells

Path4: Function call with size = 3, and input array with 3 valid cells

Path5: Function call with size = 4, and input array with 4 valid cells

4) Looping Coverage Plan

Loop 20 times: function call with size = 20, and input array with 20 valid cells

Loop MAX-1 times: function call with size = 359, and input array with 359 valid cells

Loop MAX times: function call with size = 360, and input array with 360 valid cells

Loop MAX+1 times: function call with size = 361, and input array with 361 valid cells

5) Condition Coverage Plan

Covered in Branching

b) Unit 2 – Display Histogram / BarGraph

1) Pseudocode

1. xpix = window.sizex() * .9

2. ypix = window.sizey() * .9

3. xslope = MAX(xval[]) * 1.2 / xpix

4. yslope = ypix / size

5. window.changeOrigin((window.sizex() – xpix) / 2,

6. (window.sizey() – ypix) / 2)

7. yoffset = 0

8. while(i++ < size){

9. drawRectangle(0,xslope*xval[i],

10. yoffset,yslope,color)

11. yoffset += yslope}

12. show

2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 4 – 4 + 2 = 2

Path1: 1,2,3,4,5,6,7,10

Path2: 1,2,3,4,5,6,7,8,9,7,10

3) Branching Coverage Plan

Path1
input size = 0

Path2
input size = 1, and input xval and yval with one valid cell

4) Looping Coverage Plan

Looping 20 times: input size = 20, input xval and yval with 20 valid cells

Looping MAX-1 times: input size = 19999, input xval and yval with 19999 valid cells

Looping MAX times: input size = 20000, input xval and yval with 20000 valid cells

Looping MAX+1 times: input size = 20001, input xval and yval with 20001 valid cells

5) Conditional Coverage Plan

Covered in Branching

c) Unit 3 – Display Sequence vs. Time

1) Pseudocode

1. xpix = window.sizex() * .9

2. ypix = window.sizey() * .9

3. xslope = MAX(xval[]) / xpix

4. yslope = ypix / size

5. window.changeOrigin((window.sizex() * size – xpix)/2,

6. (window.sizey() – pixy)/2)

7. xoffset = 0

8. yoffset = 0

9. while(i++ < size){

10. draw.Line(xoffset,yoffset,xval[i]/xslope,yoffset)

11. xoffset += xval[i] / xslope;

12. yoffset += yslope}

13. show

2) Flow Diagram

Cyclomatic Complexity = V(G) = E – N + 2 = 4 – 4 + 2 = 2

Path1: 1,2,3,4,5,6,7,8,12

Path2: 1,2,3,4,5,6,7,8,8,9,10,11,9,12

3) Branching Coverage Plan

Path1
input size = 0

Path2
input size = 1, input arrays xval and yval have 1 valid cell

4) Looping Coverage Plan

Loop 20 times: input size = 20, xval and yval have 20 valid cells

Loop MAX-1 times: input size = 19999, xval and yval have 19999 valid cells

Loop MAX times: input size = 20000, xval and yval have 20000 valid cells

Loop MAX+1 times: input size = 20001, xval and yval have 20001 valid cells

5) Condition Coverage Plan

Covered in Branching

2) Black Box Test Plan

This module will not be black box tested because it’s components do not interact. The units are grouped together because of their similarity, and not because they form a cohesive, co-dependent section of code. There are no internal function calls, so invocation testing won’t be performed either.

Snoop

1) White Box Test Plan

a) Main unit

1) Pseudocode

1. while(offset = ParsePacket(snoopfile, parent,

2. ipoffset);){

3. RetransPacket(connectionList);

4. Checksum(ipoffset, offset);

5. PassPacket();}

6. exit

2) Flow diagram

Cyclomatic Complexity = V(G) = 5 – 5 + 2 = 2

Path1: 1,2,3,4,1,5

Path2: 1,5

3) Branching Coverage Plan

Path1
A valid snoopfile with at least 1 packet

Path2
A valid snoopfile with 0 packets

4) Looping Coverage Plan

Loop 20 times = Snoop2 file with 20 Packets

Loop MAX –1 times = Snoop2 file with 19,999 packets

Loop MAX times = Snoop2 file with 20,000 packets

Loop MAX + 1 times = Snoop2 file with 20,001 packets

5) Conditional Coverage Plan

A Snoop2 file with many packets

A Snoop2 file with 0 packets

2) Black Box Test Plan

The data to be used to test the snoop function will come from packets with known values. One packet will contain a packet with an odd number of bytes to test the checksum function. One snoop file will have no packets in it. Another will have 19,999 packets, one with 20,000, and on with 20,001 packets to test the control structures within snoop. One snoop file will be larger than 1.44MBytes to test the checksum and parsepacket functions. One snoop file will have a single packet within it that is larger than 1.44MBytes which will represent a worst case scenario for large packet size, according to the specifications. These test plans can only be implemented if we had a tool to generate packets with the known values. Since we don’t know of any tools to generate packets, these test plans are based the use of such a tool.

ParsePacket

1) White Box Test Plan

a) Main Unit

1) Pseudocode

1. if(ipoffset == 0);

2. file_seek(snoopfile, snoop_header_size,

3. Cur_Position, forward);

4. size_of_packet = read(snoopfile, 4_Bytes);

5. ipoffset = ipoffset + size_of_packet;

6. for(size_of_packet > 0; size_of_packet =

7. size_of_packet +1;) {

8. addtolist(PacketList, read(snoopfile,1_Byte); }

9. return(ipoffset);

2) Flow Diagram

Cyclomatic Complexity = V(G) = 8 – 7 + 2 = 3

Path1: 1,3,4,5,7

Path2: 1,2,3,4,5,7

Path3: 1,2,3,4,5,6,5,7

3) Branch Coverage Plan

Path1
Not the first packet and a packet size of 0

Path2
The first packet, and a packet size of 0

Path3
Not the first packet and a packet size greater than 0

Path4
The first packet, and a packet size greater than 0

4) Loop Coverage Plan

Loop 20 times = Snoop2 file with 20 Packets

Loop MAX –1 times = Snoop2 file with 19,999 packets

Loop MAX times = Snoop2 file with 20,000 packets

Loop MAX + 1 times = Snoop2 file with 20,001 packets

5) Conditional Coverage Plan

A Snoop2 file with many packets

A Snoop2 file with 0 packets

2) Black Box Test Plan

This module will not be black box tested because it’s components do not interact. The units are grouped together because of their similarity, and not because they form a cohesive, co-dependent section of code. There are no internal function calls, so invocation testing won’t be performed either.

Checksum

1) White Box Test Plan

a) Main Unit

1) Pseudocode

1. register long sum;

2. count = ipoffset;

3. while(count > 1){

4. sum = sum + * (unsigned short) addr++;

5. count = count - 2;}

6. if(count > 0)

7. sum = sum + * (unsigned char *) addr;

8. appendPacket(~sum, cList);

2) Flow Diagram

Cyclomatic Complexity = V(G) = 6 – 8 + 2 = 0

Path 1: 12,3,4,5,3,4,5,6,7,8

3) Branch Coverage Plan

Path1 A packet larger than 0, with an odd number of bytes

4) Loop Coverage Plan

No Loop = ipoffset < 0, if no packets are available

Loop MAX –1 times = Packet 1 byte smaller than 1.44 MBytes

Loop MAX times = Packet the size of a floppy disk

Loop Max +1 times = Packet the size of 1.44MBytes + 1 Byte

5) Condition Coverage Plan

No packets

1 small packet (< 2kBytes)

Many small packets

1 Large packet (1.44 MBytes)

1 Extra Large packet (1.44 Mbytes + 1 Byte)

2) Black Box Test Plan

This module will not be black box tested because its components do not interact. The units are grouped together because of their similarity, and not because they form a cohesive, co-dependent section of code. There are no internal function calls, so invocation testing won’t be performed either.

PassPacket

1) White Box Test Plan

a) Main Unit

1) Pseudocode

1. addtolist(ZeroPacketList, zList);

2. addtolist(PacketList, pList);

3. addtolist(ConnectionList, cList);

Note: The addtolist() function represents built in functionality within Java.

2) Flow Diagram

Cyclomatic complexity = V(G) = 2 –3 +2 = 1

Path1: 1,2,3
3) Branch Coverage Plan

Path1
Any packets are valid data

4) Loop Coverage Plan

No looping occurs within the function

5) Condition Coverage Plan

No conditional tests

2) Black Box Test Plan

This module will not be black box tested because it’s components do not interact. The units are grouped together because of their similarity, and not because they form a cohesive, co-dependent section of code. There are no internal function calls, so invocation testing won’t be performed either.

RetransPacket

1) White Box Test Plan

a) Main Unit

1) Pseudocode

1. Packet retrans = ConnectionList.findSequence(packet);

2. if(retrans != null) {

3. retrans.retransmission = true;

4. return;

2) Flow Diagram

Cyclomatic complexity = V(G) = 4 – 4 +2 = 2

Path1: 1,2,3,4

Path2: 1,2,4
3) Branch Coverage Plan

Path1
Any packets are valid data

4) Loop Coverage Plan

retrans = null;

retrans != null;

5) Condition Coverage Plan

See Loop Coverage Plan

2) Black Box Test Plan

This module will not be black box tested because it’s components do not interact. The units are grouped together because of their similarity, and not because they form a cohesive, co-dependent section of code. There are no internal function calls, so invocation testing won’t be performed either.

Packet List

1) White Box Test Plan

a) Constructor

1) Pseudocode

1. first = last = null;

2. num_of_packets = 0;

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 1 – 2 +2 = 1

3) Branch Coverage Plan

Path 1: 1,2

Path 1: 1,2 no input

4) Looping

Path 1: 1,2

Path 1: 1,2 no input

5) Condition

Path 1: 1,2

Path 1: 1,2 no input

This is only a constructor and will require no data only to be called

b) Append (packet NewPacket)

1) Pseudocode

1. last.next = NewPacket;

2. last = last.next;

3. num_of_packets = 0;

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 2 – 3 + 2 = 1

Path 1: 1,2,3

Path 1: 1,2,3 Valid Packet

3) Branch Coverage Plan

Path 1: Valid Packet

4) Loop Coverage Plan

NO LOOPING

5) Condition Coverage Plan

NO CONDITIONAL CODE

Note: This append will only require a valid packet

c) Find_packet(int number)

1) Pseudocode

1. Packet temp = first;

2. if (number > num_of_packets)

3. return null

4. for (int i = 0; i < val; i++){

5. temp = temp.next }

6. return (temp)

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 7 – 6 + 2 = 3

Path 1: 1,2,3,6

Path 2: 1,2,4,6

Path 3: 1,2,4,5,4,6

3) Branch Coverage Plan

Path 1: The number sent in is larger then the total number of packets

Path 2: Will never be taken because of Path 1

Path 3: The number sent in is less that the total number of packets

4) Loop Coverage Plan

Loop 20 times = Packet list with 20+ packets and send in a value of 20

Loop MAX-1 times = Packet list with 19999+ packets and send in value of 1999

Loop MAX time = Packet list with 20000+ packets and send in a value of 20000

Loop MAX+1 time = Packet list with 20001+ packets and send in a value 20001

5) Condition Coverage Plan

Covered in branching

ZeroWindow, Retrans

1) White Box Test Plan

a) Constructor

1) Pseudocode

1. first = last = null;

2. num_of_packets = 0;

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 1 – 2 +2 = 1

Path 1: 1,2

Path 1: 1,2 no input

3) Branch Coverage Plan

Path 1: 1,2

Path 1: 1,2 no input

4) Loop Coverage Plan

Path 1: 1,2

Path 1: 1,2 no input

5) Condition Coverage Plan

Path 1: 1,2

Path 1: 1,2 no input

Note: This is only a constructor and will require no data only to be called.

b) Append (packet NewPacket)

1) Pseudocode

1. if (NewPacket.PacketRef.Window == 0){

2. last.next = NewPacket;

3. last = last.next;

4. num_of_packets = 0;

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 4 – 5 + 2 = 1

Path 1: 1,2,3,4

Path 2: 1,5

3) Branching

Path 1: Valid Packet

Path 2: The window size or retransmissions is checked

4) Looping

NO LOOPING

5) Condition

Path 1: Has a Zero window

Path 2: Does not have a zero window

Note: This append will require a valid packet that has zero window or is a retransmission.

c) Find_packet(int number)

1) Pseudocode

1. Packet temp = first;

2. if (number > num_of_packets)

3. return null

4. for (int I = 0; I < val; I++){

5. temp = temp.next }

6. return (temp)

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 7 – 6 + 2 = 3

Path 1: 1,2,3,6

Path 2: 1,2,4,6

Path 3: 1,2,4,5,4,6

3) Branch Coverage Plan

Path 1: The number sent in is larger then the total number of packets

Path 2: Will never be taken because of Path 1

Path 3: The number sent in is less that the total number of packets

4) Loop Coverage Plan

Loop 20 times = Packet list with 20+ packets and send in a value of 20

Loop MAX-1 times = Packet list with 19999+ packets and send in value of 1999

Loop MAX time = Packet list with 20000+ packets and send in a value of 20000

Loop MAX+1 time = Packet list with 20001+ packets and send in a value 20001

5) Condition

Covered in branching

Connection List

1) White Box Test Plan

a) Constructor

1) Pseudocode

1. first = last = null;

2. num_of_packets = 0;

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 1 – 2 +2 = 1

Path 1: 1,2

3) Branch Coverage Plan

Path 1: 1,2 no input

4) Loop Coverage Plan

Path 1: 1,2 no input

5) Condition Coverage Plan

Path 1: 1,2 no input

Note: This is only a constructor and will require no data only to be called.

b) Append (packet NewPacket)

1) Pseudocode

1. if (NewPacket.PacketRef.Port == this.Port){

2. last.next = NewPacket;

3. last = last.next;

4. num_of_packets = 0;

2) Flow Diagram

Cyclomatic complexity = V(G) = E –N + 2 = 4 – 5 + 2 = 1

Path 1: 1,2,3,4

Path 2: 1,5

3) Branch Coverage Plan

Path 1: Valid Packet

Path 2: The window size or retransmissions is checked

4) Loop Coverage Plan

NO LOOPING

5) Condition

Path 1: Has a Zero window

Path 2: Does not have a zero window

Note: This append will require a valid packet that has zero window or is a retransmission.

Find Connection

3) White Box Test Plan

a) Main Unit

1) Pseudocode

1. ConnectionLists temp = first;

2. for(int i = 0; (I < num_of_connections) && (temp !=

 null); ++i){

3. if ((temp.Port == Port)

4. break

5. else

6. temp = temp.next}

7. return temp

2) Flow Diagram

Cyclomatic complexity = V(G) = E – N + 2 = 8 – 7 + 2 = 3
Path 1: 1,2,7

Path 2: 1,2,3,4,7

Path 3: 1,2,3,5,6,3,7

3) Branch Coverage Plan

Path 1: Valid data

Path 2: invalid data

Path 3: 1,2 Valid data

3 packet does not match

5,6,3,7 Valid data

4) Loop Coverage Plan

Loop 20 times = Packet list with 20+ packets and send in a value of 20

Loop MAX-1 times = Packet list with 19999+ packets and send in value of 1999

Loop MAX time = Packet list with 20000+ packets and send in a value of 20000

Loop MAX+1 time = Packet list with 20001+ packets and send in a value 20001

5) Condition Coverage Plan

Covered in branching

Connection List

1) White Box Test Plan

a) FindSeq

1) Pseudocode

1. ConnectionPacketList temp1 = first; C_Packet temp;

2. for(int i = 0 ; i < num_of_connections; i ++){

3. if (sequ.connection != first.connection)

4. temp1 = temp1.next}

5. if (temp1 == null)

6. return null

7. temp = temp1.first

8. for(int i = 0; i < temp.num_of_connectionpackets;

9. ++i){

10. if (temp.sequence != sequ.sequence)

11. temp = temp.next}

12. return temp

2) Flow Graph

Cyclomatic complexity = V(G) = E – N +2 = 14 – 11 + 2 + exit = 7

Path1: 1,2,5,6

Path2: 1,2,3,4,2,5,6

Path3: 1,2,3,4,2,5,7,8,9,10,8,11

Path4: 1,2,3,2,5,7,8,9,10,8,11

Path5: 1,2,3,4,2,5,7,8,9,8,11

Path6: 1,2,5,7,8,11

Path7: 1,2,3,2,5,7,8,11

3) Branch Coverage Plan

Path1: Needs a empty connection list

Path2: A connection list that is not empty and does not contain the packet sent in

Path3: A connection list that is not empty and contains the packet

Path4: The first connection in the connection list is the packet we are looking for

Path5: The first packet in the connection is the connection list is what we are looking for

Path6: This event can never happen

Path7: The Packet is in the first connection and is the first packet in the list

4) Loop Coverage Plan

Value = 20 A list of 20 connections and each connection has 20 packets

MAX –1 A list of 19999 connections and each connection had 19999 packets

MAX A list of 20000 connections and each connection had 20000 packets

MAX + 1 A list of 20001 connections and each connection had 20001 packets

5) Condition

This is covered in branch coverage.

INTEGRATION & SYSTEM LEVEL TESTS

Integration 1:
1) Module 1 – Statistics

2) Module 2 – Display

3) Module 3 – Lists

Black Box Test Plan

The input to this module consists of a packet or list of packets. The output consists of a combination of class fields and arrays. The display module is added to this build so that the class fields and arrays of Statistics can be visually verified.

There are two characteristics to the input data packets, the number of packets and the packet contents. The black box testing data sets will be generated by packet generation software. Equivalence partitioning and boundary testing will both be covered by the output of the software. A description of the packet generation software follows the data set description

Characteristic : Number of files

1) Boundary Testing Plan

a) Lower Boundary = 0

b) Upper Boundary = 20000

Test Cases: 0, 1, 19990, 20000, 20010

(There is no test case less than 0, so none is included)

2) Equivalence partitioning

Test Range

Test Value

· 0 – 4000

1000

· 4001 – 8000

5000

· 8001 – 12000

10000

· 12001 – 16000

15000

· 16001 – 20000

18000

Characteristic: Packet contents

1) Boundary Testing Plan – The following fields have boundaries

a) packet.next

(NULL – Valid address)

b) window

(0 - >0)

c) checksum_flag
(true – false)

d) retrans_flag

(true – false)

16 test cases will be generated representing every combination of the 4 values.

2) Equivalence partitioning – The following fields have a range of inputs. Error handling in the class that generates ensures that these fields will have valid data, so there are no legitimate boundaries. Test cases covering every unique combination will be generated by software. Each field will be tested at a low, medium, and high value. For ints these values are 10, 32000, and 60000, respectively. For shorts these values are 10, 12000, and 30000

a) time_stamp_sec
(int)

b) time_stamp_msec
(int)

c) source_IP

(short)

d) destination_IP

(short)

e) source_TCP_port
(short)

f) destination_TCP_port
(short)

g) sequence_num

(int)

h) ack_num

(int)

i) TCP_checksum
(int)

j) packet_data_size
(int)

3) Test Code

The code that develops the required test sets will loop through each of the 10 fields, changing the value from low to medium to high to test each combination possible. The final list will be broken up into pieces that meet the boundary and equivalence partitioning requirements for the number of packets in a list.

1

Wait for user selection

1

2,3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1,2…5

10,11,12

7,8,9

6

1,2,3

1,2,3

1

2

3

4

5

6,7

8,9,10,11

1

2

3

4

5

6,7,8,9

10

1

2

3,4,5

6

1

2

3

4

5

8

7

6

9

10

1,2,3,4,5,6

7

10

8,9

1,2,3,4,5,6,7

8

9,10,11

12

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

1

2

3

4

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

 8

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

 1

� EMBED PBrush ���

1

2

7

3

4

5

6

 7

6(exit)

 5

 4

 3

 2

 11

 10

 9

1

3,5,8

2

4

6

9

exit

7

2

1

_950025846

_950030080

_950032921

_950027540

_950002881

_950004689

_950008226

_950003609

_950002582

