

Unit Development Folder

~ Lexical Analyzer

Programmer: Justin Tumlinson

Team: Motorola

Date: April 28,1997

Revision: 1.0

�SUMMARY PAGE

BRIEF DESCRIPTION

The purpose of the Lexical Analyzer will be to search an application written in the Java programming language for token strings defined in the M_defs.h file. When a token string is found, an “M_” will be added at the front of the token string creating a new string of the type, M_Component. Component being one of the seventeen components presented to our group for modification. Searching will continue until an end of file marker is encountered.

The lexical analyzer will be integrated with the M_defs.h(definitions) file and the M_parse.c(parser) file to create the Translator.

WHITE BOX TEST STRATEGY

The white box testing strategy will test for the conditions of:

The current character will not complete a recognized token.

The current character is part of a file condition; either EOF or EOL.

The current character is part of a containing field ‘{‘ or ‘}’.

The current character is whitespace.

The current character is part of a comment.

The current character is part of a string.

The current character is a m_class library token.

The current character is outside of the range of supported tokens, strings, file conditions, comments, whitespace, or containing field.

Invocation Test Plan

Since the Lexical analyzer is invoked from within the parser, this stage of testing is

simplified by simply recognizing that the lexical analyzer returns the proper tokens in the right situations to the parser. Thus it is left as deferred.

Branch Coverage Test Plan

There are no branches within the lexical analyzer and as such there are no conditions that merit the testing for them.

Loop Coverage Test Plan

No loops exist within the lexical analyzer and hence this condition is not tested for.

�

Conditional Coverage Plan

This is the heart of the lexical analyzer. The program is simply called continuously throughout the parser while not at EOF. Here the program simply builds strings one character at a time by calls to the input file. Once a string is built that meets one of the conditions it sets a global variable within the Parser and this is then operated on by the parser to perform the necessary operations. Conditions exist that are similar to those within the parser for testing and as such we can simply use the same data types as inputs.

Conditions we want to test for are:

If the string is a M_<token>.

If the string is a file condition.

If the string indicates a comment section.

If the string indicates a containing field.

If the string should be translated or simply returned.

BLACK BOX TEST STRATEGY

Equivalence Partitioning Test Plan

There are no conditions within the lexical analyzer that have similar data types - the data is either a recognized token string or condition or not. As such the need for equivalence partitioning is not necessary.

Boundary Value Analysis Test Plan

Similar to the case of the equivalence partitioning test plan above the case for boundary value analysis is not need here. This is due to the data type as input. So the boundary value analysis is to be deferred.

Cause/Effect Analysis Test Plan

Here the lexical analyzer is to build up strings from individual characters until it encounters a condition where it can then either set a global variable to be utilized by the parser later or continue building the string. We are looking for support for the conditions of:

String is not recognized and is not changed within the code.

String is a recognized m_class token and should be changed.

String is a file condition.

String is a comment, brace, or whitespace.

Testing will consist of test for each of the above circumstances.

�

CODE REVIEWERS SIGNATURES

����������������������Dave Todd����Darold Litzin������������������������John Aichholz����Brian Mecham��

BUILD LEADER SIGNATURE

����������������������Justin Tumlinson������

�

SOURCE CODE

�

WHITE BOX TEST DATA

�

BLACK BOX TEST DATA

�

WHITE BOX TEST RESULTS

�

BLACK BOX TEST RESULTS

