

Measurement System Automation:

Tech Feasibility

4/1/25

Team Name: Thermo-Gen

Sponsor: Steve Miller

Mentor: Jeevana Swaroop Kalapala

Team Members: Olivia Vester, Kameron Napier, Gareth Carew

Table of Contents

1. Introduction..3

● Introducing the client, the problem, and the proposed solution.

2. Technological Challenges.. 3

● Laying out our most significant challenges.

3. Technology Analysis...4

● Looking at the issues we have one by one and introducing them, the desired

characteristics of our solution, alternative solutions, analysis of solutions, the approach

chosen, and proving feasibility.

3.1 Issue 1 - Language Integration and Thermocouple Reading (pg. 4)

 3.2 Issue 2 - Temperature Control (pg. 6)

 3.3 Issue 3 - Pressure Control (pg. 7)

 3.4 Issue 4 - Notifications (pg. 8)

4. Technology Integration... 11

● Describing how all the working components will ultimately fit together.

 4.1 Figure 1 - Outside Components (pg.12)

 4.1 Figure 2 - Inside Components (pg.13)

5. Conclusion... 13

2

1. Introduction

Safety in the field is a priority in every industry‒ engineering, geology, space

exploration, and more. To maintain safety, particular precautions must be taken and
protective materials must be worn or used with necessary equipment.

At HeetShield, they create the materials that ensure the safety of researchers,
engineers, scientists, etc. while they conduct their work. These materials range from
thermal layers to protect people and objects (like scuba gear) from extreme cold
temperatures to heat resistant materials that line spacecrafts. The materials hold a high
level of importance for the protection of the individuals impacted by extreme
environments. One factor that any individual entering extreme conditions would like to
rely on is that the materials made to protect them have been rigorously and precisely
tested. That is where the problem we are solving for our client HeetShield comes into
play.

As stated above, HeetShield creates thermal materials used across several
technical disciplines for purposes of protection. HeetShield has been working on
manufacturing and testing these materials since 2020 under the leadership of Steve
Miller with contracted work to organizations like NASA and the United States Marine
Corps. The company creates these materials and has a custom-built in-house
apparatus to test them, but, unfortunately, setting the condition parameters for this
testing is extremely difficult and lacks much needed precision and sophistication an
operation like this requires.

Right now, the company’s temporary solution to these problems is to spend
hours on data collection using manually set parameters that are not as exact as they
could be. Our job is to create an interface for the measurement apparatus that allows
technicians to precisely set temperature and pressure conditions.

Our solution is one that aims to be fulfilled by the creation of a standalone
software that allows the apparatus operator to set the temperature for the testing
environment and alert them of when undesired pressure changes occur. Our solution,
though seemingly cut-and-dry, comes with a series of challenges that must be
overcome in order to create a beta software.

2. Technological Challenges

As it is relatively early in the project, we are in the process of analyzing all of the

important technological challenges, identifying possible alternatives, and selecting
which of those alternatives provide the most promising solutions. In this document, we
begin by analysing the major technological challenges we expect to face while trying to
make the system more efficient and precise.

The main challenges are determining how to control both temperature and
pressure digitally while ensuring that the automated system is faster and more accurate
than manual controls. Yet another challenge is finding and implementing a solution for
reading data from the thermocouple. A smaller but still just as important challenge
would be setting up a GUI so that the system operator can easily enter the desired test
environment and choose how they want to be notified. The final major challenge is

3

determining what type of notification and interface system to implement to ensure safety
and maximize usability. We also want to emphasize the usage of Python to write the
code for our system.

In the following section, we then analyze each of these challenges in turn:
looking at alternatives, discussing how we explored them, and explaining our rationale
for choosing a particular solution. The integration section following our analysis explains
how we plan to combine all of the smaller solutions into a cohesive final product.

3. Technology Analysis

Our client faces a very specific issue: the product they test has qualities that

outweigh the ability of their current technology. A current need in testing for the team at
HeetShield is to get their testing apparatus to be set to 760C+ temperatures. We want
to make a digital interface for their measurement system to allow temperatures and
pressures to be set as a parameter and measured throughout the testing process. The
other major issue is reading data from the thermocouples. We have decided to use
National Instrument’s Python API in order to pull data directly from the DAC.
 Our ideal solution to this problem would be for us to build an application that
would allow us to read the data from the thermocouples and then based on the data
collected, control the temperature and pressure within the measurement system and
then send notifications to tell the test operator that the parameters are met and ready for
testing or that they can't be met.

3.1 Issue 1 - Language Integration and Thermocouple Reading

3.1.1 Intro

As computer scientists, the language in which we are conducting our work is
important to establish early-on. A language that is known by all team members will be
the base-line need for us to develop a piece of software with. With this in mind, the team
has also looked into what language would allow us to easily create a nice looking GUI
and be compliant with the mechanical parts used in this project.

3.1.2 Desired Characteristics

All of the components we are going to be using (temperature measuring,
pressure measuring, etc.) can be integrated into a software system we created by using
pre-made Python packages that we can use to complement our system. We want our
language to not just be compatible with the team as programmers but with our client’s
mechanical needs as well. It is also significant that we can read the thermocouple data
coming in from the DAC as well using National Instrument’s APIs as this is where we
will be getting our temperature information from in the testing environment. We also
need to be able to show the user all of the information that we are gathering, so we
need to be able to create a UI that is simple, yet shows all of the data that they need to
see as well as places where they can adjust test parameters.

4

3.1.3 Alternatives

As with every decision in a large-scale project, a backup plan must be put into
place. Stated above, it is established that the team has chosen Python for the API
features that integrate well with the work we wish to conduct, like the National
Instrument’s Python API, but there are other alternatives out there. There are also a
number of GUI frameworks available for python such as Tkinter, PyQt or PySide.

Another possible solution would be for us to use a language like C; all the team
members have knowledge in this language and since it is quite popular, finding
integrative techniques is an easily researchable topic. A simple search gives results for
several C language weather tracking APIs that could be molded to fit our system. The
main GUI toolkit for C is GTK, which while usable, like the rest of C, requires a lot more
effort and knowledge.

A final possible alternative for language integration would be using something
like lm-sensors on Linux which is made to read hardware temperatures; we list this
last just because Linux can be tricky and do not want to prioritize it as a main
alternative.

3.1.4 Analysis

For Python, there is loads of documentation out there that helps make what we
need compatible with what we have (like for Python and DAC for thermocouple
reading).
 For C, there is also plenty of similar documentation like that of Python. We do, as
a team, know C, but find it to require slightly more work than a language like Python
may require because of its manual memory management.
 Lastly, is the Linux option. Those who prefer Linux, swear by it, and can frankly
bend it at their will to make it function however they want, but those who do not often
use it, find it to be a little tough to navigate. Our team, however, has no strong feelings
towards Linux being our choice language. Linux is capable of interpreting data like
temperature and pressure inputs but must do so with a chain of commands more
complex than is necessary.

3.1.5 Chosen Approach

Our chosen approach, as previously stated, is to use Python as our language of
choice for integrating the software component of our project. We chose this approach
not only for the ease of use for the team itself but also because of the system
compatibility with widely available APIs and features that can help us with reading in
thermocouple data as well as the fairly straightforward GUI packages which allow us to
easily show the user the data that has been collected.

5

3.1.6 Proving Feasibility

For the system we are working toward creating, information is going to be read in

from a DAC, much like with HeetShield’s current system. Conveniently, there is an
entire site dedicated to the documentation of DAC and Python use that will allow us to
know what we have, what we need, and what to change in regards to Python and
integrating it into our software. There are also extensive docs for Qt as well as PySide
which is the python wrapper for Qt. With this information we can use Python to get our
thermocouple data read into our system and displayed to the user.

3.2 Issue 2 - Temperature control

3.2.1 Intro

Temperature is one of two main pieces of their system that our application has to
control. The first problem our program aims to solve is being able to control the power
supply to regulate the temperature. The other problem is reading in the temperature
data from the DAC that is connected to the thermocouples. If our system can solve both
of these issues, the system will be able to be used much more efficiently.

3.2.2 Desired Characteristics

The perfect system would be one that is able to accurately get to any pressure
inputted by the user from 25 degrees C to 600 degrees C. The operator should be able
to input the desired temperature in the GUI and be able to leave while the program
works to bring the test chamber to the specified temperature. It must also be
accomplished in a cost effective manner both in our solution and operation. The
automation must also be faster and more accurate than if it was done by a person. This
is important because the automation will speed up the process allowing them to do
more tests in a day.

3.2.3 Alternatives

The most likely solution to automate the power supply is that the power supply

needs to connect to a microcontroller via a 25 pin connector and cable that then
connects via USB to a PC. This requires software for the microcontroller and PC. There
are a variety of microcontrollers to evaluate. Our team will be working with Professors
David Cole and Carlo daCunha who have the subject matter experience (SME). Our
team did not have the SME contact information until March 27, and thus we are still
working on the details.

3.2.4 Analysis

Our team will complete the analysis based on the information gathered from the

subject matter experts.

6

3.2.5 Chosen Approach

The chosen approach will be determined in conjunction with recommendations

from subject matter experts.

3.2.6 Proving Feasibility

In order to prove feasibility the team will write a small test program for the

microcontroller to drive the 25 pin connector to ensure that we can drive the 25 pin
connector to its specified limits and to its specified accuracy. The software is dependent
on the specific microcontroller that is chosen. There may be electrical engineering tasks
that are outside the expertise of the student team members.

3.3 Issue 3 - Pressure control

3.3.1 Intro

Pressure is the other main variable that our system has to control. The problem
is twofold and stems from (a) the fact that the system cannot control the pressure from
software and (b) there are two gauges – one for high pressure and one for low
pressure. The low pressure dial is digital, and thus currently readable, but the high
pressure dial is not digital, so not currently readable. Solving both of these problems will
make the processes go faster.

3.3.2 Desired Characteristics

The perfect system would be one that is able to accurately get to any pressure
inputted by the user from 580 torr (atmospheric pressure) to 0.1 torr (near vacuum). The
operator should be able to input the desired pressure in some GUI and be able to leave
and the apparatus gets brought to it. It must also be accomplished in a cost effective
manner both in our solution and operation. The automation must also be faster and
more accurate than if it was done by a person. This is important because the
automation will speed up the process allowing them to do more tests in a day.

3.3.3 Alternatives

There are two main alternatives to solving this problem: buying a new vacuum
pump or valve, either of which would need to be able to be electronically controlled.
Additionally the hardware that controls the pressure needs to directly interface with the
PC or have a simple enough interface that the chosen microcontroller can control it. Our
team will be working with Professors David Cole, Carlo daCunha, and Constantin
Ciocanel who have the subject matter experience. Our team did not have the SME
contact information until March 27, and thus we are still working on the details.

7

3.3.4 Analysis

Our team will complete the analysis based on the information gathered from the

subject matter experts.

3.3.5 Chosen Approach

The chosen approach will be determined in conjunction with recommendations

from subject matter experts.

3.3.6 Proving Feasibility

With the expectation that the required hardware will be expensive, in order to

prove feasibility the team will walk through the specifications of the chosen hardware to
ensure that they are within specified ranges. There may be electrical engineering tasks
that are outside the expertise of the student team members.

3.4 Issue 4 - Notifications

3.4.1 Intro

With the end goal being automation of their current system we need a way to
inform the operator when the test parameters are set. We would also need it to inform
the operator in case something goes wrong. This would be mostly a quality of life
feature that helps alleviate the need to constantly check.

3.4.2 Desired Characteristics

The desired results would be a way to inform the user of the system being set up
from anywhere at any time with customization so the operator can choose how to be
notified. The list of options for notifications would be checkboxes, toggle switches or
some other way to show which kind of notifications are turned on in the GUI. This is an
important feature because it provides ease of use and allows for flexibility on the
operator's end to do other tasks without worrying about letting the test environment sit
there while ready.

3.4.3 Alternatives

One possible way to notify the operator would be a windows notification. This
was brought up in a meeting as a possible solution when talking about how our system
is going to work. This would be a part of our code base using the win10toast or
win11toast library for python depending on what version of windows is running.
Win10toast was made by Jithu R Jacob in 2018 and win11toast was made by Tomofumi
Inoue in 2022. They have been used in many applications that want to have a pop up
notification including but not limited to games, download progress, and input gathering.

8

 A light notification is another option that can be used. This is a common solution
for a situation like this and if we use a LED light we could use different colors to
represent different states it is in. We would use gpiozero because of its Raspberry Pi
support. It was made by Ben Nuttall and Dave Jones in 2015. It has been used by
numerous projects due to it being installed by default in the Raspberry Pi OS desktop
image.

Sound notifications are another possibility that could be done. This is another
common way to notify people. We would accomplish this by using the winsound library.
Winsound is provided by windows and has been since 1994. It is the default windows
sound output library for python so has been used by many projects.
 The last notification type we could do would be a phone notification. A phone
notification would inform the operator of its completion from anywhere as long as they
have their phone on them. This would be accomplished by using the notify-run library to
send the notification. The notify-run library was made by Paul Butler and released in
2018. Some applications that use notify-run are Jupyter Notebooks, Keras and many
other web services.

3.4.4 Analysis

All of these notification systems have their uses and could be used. The want for
multiple that the operator can choose from would mean we could use all but with limited
time and resources we would need to choose ones, at least initially, with little overhead
and have many upsides with little overlap between them. Windows notifications are
already a part of windows and the use of them requires no additional items besides
importing a library in python. Light notifications have less additional elements than
originally thought of since we are already going to be using a Raspberry Pi so the only
additional element would be the LED light. Sound notifications can be accomplished
using the laptops speakers however if the system is swapped to a computer with no
speakers then an additional item would need to be purchased. Phone notifications
would require the operator to have a phone which most people do but if theirs is dead or
left at home then there is no way for them to be notified.

3.4.5 Chosen Approach

The pros of windows notifications are that they are simple, get the point across
and highly customizable and could even take user input after it reaches the goal to
change what parameters they want. The cons are that if you are not at the computer
you would not be able to see that it is done testing and the notifications are kinda small
and can be not realized initially since they are similar to regular windows notifications.
Light notification solves the need to be there problem with the pros being: can be seen
from a distance, can have different lights mean different things and is also able to utilize
the Raspberry Pi. The cons are that it can break and leds tend to be small without some
complex system. The pros of sound notification are they can easily get someone's
attention and can be customized. The cons are it can be missed if there is a louder
noise happening, teaching someone new what the sounds mean could be difficult, and
could get complaints from other businesses nearby if done wrong. The pros of phone

9

notifications are they can be seen from anywhere, the user can customize how loudly it
notifies them by changing the volume on their phone. The cons are that the user needs
to have their phone on them and phones are used for other things so they might receive
notifications for other things and think it is our system.

 Ability To
Notify When

Done

Ability To
Notify When
Goes Wrong

Use With
Other

Notifications

Lack of
Additional

Items

Additional
Uses

Windows 3 3 5 5 5

Light 4 4 4 4 4

Sound 4 3 4 4 3

Phone 4 4 3 2 4

The table shows ratings of different uses wanted for the notification system.
Windows notifications overall score a 21, the light notifications scored 20, sound
notifications got a 18 and phone notifications scored a 17. Based on this our initial
notification system will have both windows notifications and light notification. If time and
resources allow we would next add phone notifications then lastly sound. We chose this
because windows and light notification provide a reliable notification system in most
cases. The reason why phone notifications would be added next instead of sound
notifications is because most of the pitfalls of windows and light notifications relate to
distance from the system which would be fixed with phone notifications the best.

3.4.6 Proving Feasibility

Feasibility of Windows notifications can be done easily with a small program
showing them working however with a lack of a Raspberry Pi and a LED light it is hard
to show that it actually works. The following code is a test of windows notifications to
show they work. A similar program would also work for the LED light. Further tests will
have a Raspberry Pi and the LED light to test and will take input from both a GUI and
take input from the temperature and pressure readers. Further tests will also make sure
the notifications stay until user input removes them.

Windows notification test
import win10toast
def check_condition():
 current_temp = 0
 current_pres = 0
 desired_temp = 10
 desired_pres = 10
 while current_temp != desired_temp and current_pres != desired_temp:
 # increment pressure and temp

10

 current_pres = current_pres + 1
 current_temp = current_temp + 1
 # check if conditions met
 if current_temp == desired_temp and current_pres == desired_temp:
 return True
 return False
create a toast notifier
notifier = win10toast.ToastNotifier()
check the condition and display the notification
if check_condition():
 notifier.show_toast("SUCCESS!", "temp and pressure met")

4. Technology Integration

To solve HeetShield’s challenges of the automation of precise temperature and
pressure control, we have designed a system where hardware and software
components work in conjunction with each other. Our system consists of three main
parts: a user interface for input, a control system to automate the process and a
notification system for feedback. By creating an extension for LabView and ways to
regulate temperature and pressure, we can enable precise temperature and pressure
measurements while automating the adjustments needed throughout the process
eliminating the need for manual input. This would ensure the testing apparatus will
reach the test environment with minimal human interaction while still being as precise
as needed.

Figure 1 demonstrates “the outer box” which is all the external components that
would be needed for this. It illustrates what data we would be intaking that being
pressure and temperature in real time multiple times a second. This data will then be
used to control other external components like the pressure valve or pump and a
Raspberry Pi which would control the PSU. The system is a closed loop system so it will
be able to correct itself every time it reads data that is not the desired test environment.

11

4.1 Figure 1: Display of outer components that will influence the software we
create

Figure 2 shows “the inner box” which is all the parts that are in the user machine.
It shows that the GUI takes user input then that input is sent to the temperature and
pressure control. The temperature and pressure control also intakes data from “the
outer box” to compare to the user input to match them to get the desired test
environment. The temperature and pressure control will output notifications using the
notification system to indicate whether the test environment was set up correctly or
failed to. The GUI will have fields for the user to input for desired temperature and
pressure and how they want to be notified about the state of the environment.

12

4.2 Figure 2: Display of the inner elements that compose the software that we
make

By unifying these elements into a single architecture we deliver a solution that is
not only faster and more accurate than manual processes but also leaves room for
further improvements. The architecture allows for further improvements, such as remote
monitoring, while addressing the current problems of manual intervention and data
handling.

5. Conclusion
In closing, the development of an automated testing system for HeetShield’s

thermal protection materials addresses a critical need for precision and efficiency. The
challenges of manual temperature and pressure control which are time consuming and
prone to human error have been systematically addressed by our three layer
architecture combining a Python control software, real time data monitoring and context
based notification system. Our system uses National Instruments’ Python API for
precise thermocouple data gathering, implements a closed loop control for maintaining
extreme temperature and pressure conditions, and incorporates a multitiered alert
system to maximize the operator's knowledge of what state the system is in. The
system design not only solves immediate problems but has been deliberately designed
to allow for future expansion. With further prototyping and SME consultation as our

13

immediate next steps, this project represents a significant advancement in the setup of
test environments that will enable HeetShield to deliver even more reliable protective
materials for extreme conditions. The integration of these technologies creates a robust
foundation that meets current operational requirements while positioning HeetShield for
future growth.

14

	
	
	1.Introduction
	2.Technological Challenges
	3.Technology Analysis
	5.Conclusion

