

Team: Kameron Napier, Gareth Carew, Olivia Vester 11/14/25

Faculty Mentor: Jeevana Swaroop Kalapala

Group Introductions

Olivia Vester - Team Leader

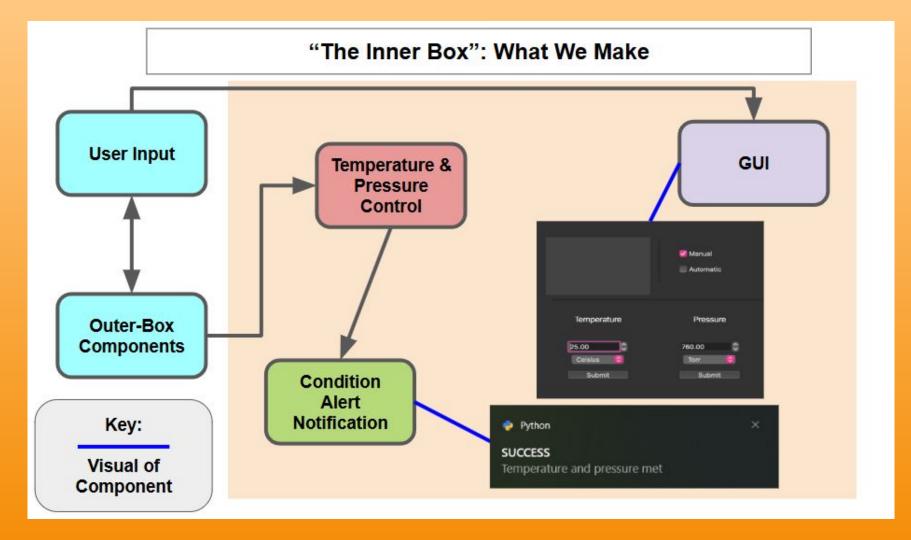
Kameron Napier - Team Release Manager

Gareth Carew - Team Architect

Problem Statement

- Our client: HeetShield
 - What do they do and how do they do it?
 - O What do they need us for?

Image from HeetShield.com


• This is the testing apparatus

Solution Overview

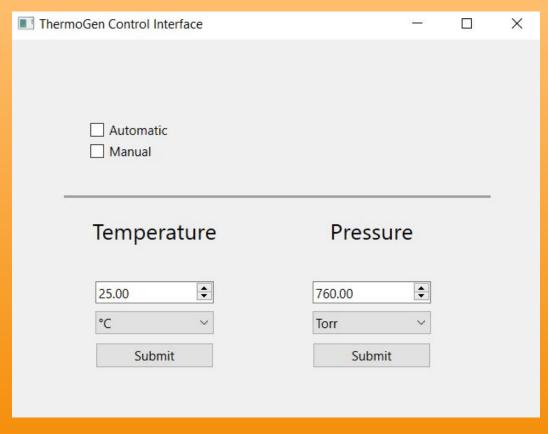
- Create an automated testing system for their material
 - Read in pressure and temperature data
 - Determine what needs to be changed to reach desired environment
 - Send updates to the parts to adjust them
 - Repeat process until environment reached

"The Outer Box": What Plugs Into What We Make Digital Pressure **Digital Control** Control Gauge Vacuum Pump Valve "The Inner Box": **What We Make PSU** DAC Key: Thermocouple Data Going In Thermocouple Thermocouple

Requirements/Specs Review

Original Plans

- Real-time Data Acquisition
- User Input and Parameter Validation
- Automated System Adjustment
- Communication and Control
- Real-time Notifications


Architecture Review

- How did we design our architecture?
 - Analyzed client workflow and hardware constraints
 - Designed modules to allow both real hardware and simulation
 - Prioritized safety, modularity, and testability
- Key Architecture Components
 - User interface:
 - Allows operator to input target values, view live readings, and switch modes
 - Control logic:
 - Compares measured values against target values to determine adjustments
 - Temperature system:
 - Reads thermocouple data and outputs voltage to power supply
 - Pressure system:
 - Reads gauge data and changes state of valve
 - Notification system:
 - Sends alerts based on system state

Implementation Overview

- How did we got our requirements?
 - We interviewed our client, did research and reached out to other professors
- Key Requirements
 - Precise temperature and pressure control
 - Real time data monitoring
 - Minimize manual input
 - Clear notification system

Prototype Review

- This is the current interface
- Planned changes after client review:
 - Additional auto and manual controls
 - Thermocouple displays

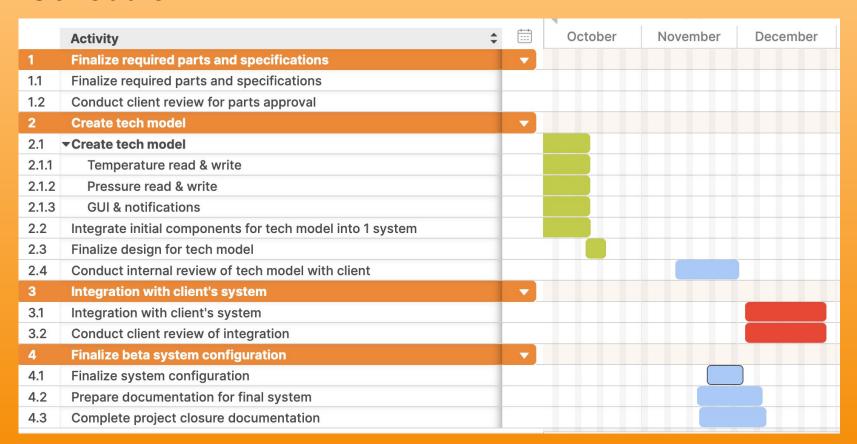
Challenges and Resolutions

- The original parts were not compatible with automation
 - Ordered needed parts to automate the process
- The ordered parts did not work
 - Pivoted the project to simulation
- Simulating parts
 - Use existing libraries to simulate them

Testing Plan

Main Focus is Usability Testing in 3 Major Stages:

Initial product test with client


 Follow-up product testing with client after making changes recommended in initial product test

Final product test WITH user manual

Testing Plan Continued

- Additional testing for our product includes:
 - Unit tests for the 8 major functions that make up our application
 - And integration testing with client's system pending mechanical updates to their system

Schedule

Conclusion

- Used in services from aerospace to emergency services and manufacturing
- Testing materials takes a long time
- Automating testing while still providing the same quality
 - Little user input
 - Accurate data
- Finalizing simulated parts, unit, integration, and usability testing.

