
  

 

  1

 

 

Requirements Document 

Version 1 

4/16/2025 

Team Name: Cyber Recon 

Sponsor: HighViz Security LLC 

Team Mentor: Veerendernath Surendernath Komala 

Team Members: Zachary Garza, Sean Weston, Jared Kagie, Christian Butler 

 

Accepted as baseline requirements for the project 

 
For The Client: __________________________________________________ Date: __________  

For the Team: ___________________________________________________ Date: __________ 



  

 

  2

 

Table of Contents 

Table of Contents .............................................................................................................................2 

Introduction ......................................................................................................................................5 

Solution Vision ................................................................................................................................7 

Function Requirements ....................................................................................................................8 

1. FR1 – Nessus File Parsing .......................................................................................................8 

2. FR2 – Severity Normalization..................................................................................................9 

3. FR3 – CVE Enrichment ...........................................................................................................9 

4. FR4 – EPSS Integration .........................................................................................................10 

5. FR5 – KEV Cross-Reference .................................................................................................11 

6. FR6 – NLP-Based Risk Inference ..........................................................................................11 

7. FR7 – Structured ML Scoring ................................................................................................12 

8. FR8 – Composite Risk Score .................................................................................................12 

9. FR9 – Risk-Based Output Generation ....................................................................................13 

10. FR10 – Local Threat Intelligence Database .........................................................................14 

11. FR11 – Incremental Data Updates .......................................................................................14 

12. FR12 – Analyst Feedback Loop ...........................................................................................15 

13. FR13 – Rule Enforcement System .......................................................................................15 

14. FR14 – Cloud Model Synchronization.................................................................................16 

15. FR15 – End-to-End Automation ..........................................................................................17 

Performance (Non-Functional) Requirements ...............................................................................18 

PR1 – Processing Speed .............................................................................................................18 



  

 

  3

 

PR2 – Model Inference Time .....................................................................................................19 

PR3 – Memory Usage ................................................................................................................20 

PR4 – Database Query Latency .................................................................................................20 

PR5 – Boot Time ........................................................................................................................21 

PR6 – Error Resilience ...............................................................................................................21 

PR7 – Scalability Baseline .........................................................................................................22 

PR8 – Security of Execution ......................................................................................................22 

Environmental Requirements.........................................................................................................23 

ER1 – Platform Support : ...........................................................................................................23 

ER2 – Offline Capability : .........................................................................................................23 

ER3 – Open-Source Libraries: ...................................................................................................24 

ER4 – Local Execution Requirements: ......................................................................................24 

ER5 – Storage Requirements .....................................................................................................24 

ER6 – Encrypted Disk Access: ..................................................................................................24 

Potential Risks: ..............................................................................................................................25 

R1 – Model Bias .........................................................................................................................25 

R2 – Misclassification ................................................................................................................25 

R3 – Dependency Vulnerabilities ..............................................................................................26 

R4 – Performance Bottlenecks ...................................................................................................26 

R5 – Threat Feed Staleness ........................................................................................................27 

R6 – Cloud Security Breach .......................................................................................................27 

R7 – Legal Compliance Risk .....................................................................................................27 



  

 

  4

 

Project Plan: ...................................................................................................................................28 

Phase 1 (Weeks 1–2): Parser and Data Normalizer Prototyped .................................................28 

Phase 2 (Weeks 3–5): Model Selection and Training ................................................................28 

Phase 3 (Weeks 6–7): Risk Prioritization Logic Implemented ..................................................28 

Phase 4 (Weeks 8–9): Report Generator and Local DB Developed ..........................................28 

Phase 5 (Weeks 10–11): UI + CLI Interfaces Finalized ............................................................29 

Phase 6 (Week 12): Full System Integration and Testing ..........................................................29 

Conclusion .....................................................................................................................................30 

Glossary .........................................................................................................................................31 

Appendices .....................................................................................................................................31 

  



  

 

  5

 

Introduction 

Statistics show that 60% of small businesses shut down six months after a cyberattack. In 
the US alone, the average cost of a data breach is currently $9.44 million. The majority of 
companies lack in-house capabilities to scan and prioritize vulnerabilities since they are 
understaffed and underfunded. This deficiency has made the majority of companies over-reliant 
on third-party cybersecurity professionals like HighViz Security LLC. 

HighViz possesses the skills to discover and document vulnerabilities with automatic 
scanners like Nessus. Although these scans detect a wide array of issues, they also produce false 
positives, they give irrelevant information, and there is just too much information—manual 
evaluation being highly inefficient and time-consuming. Cyber Recon has a solution that utilizes 
artificial intelligence in automating vulnerability scanning and prioritization. 

In the dynamically changing threat landscape of today, the imperative to refresh 
cybersecurity tactics is clearer than ever. With high-speed technology advancements have arrived 
mysterious cyberattacks aimed at even the smallest vulnerabilities, risking organizations 
financially and reputationally. Using artificial intelligence and deep analytics, the proposed 
solution will translate raw vulnerability information into actionable guidance for speeded-up 
decision-making and enhanced risk mitigation. This preemptive approach not only enhances the 
overall security position but also ensures that resources are directed to the most critical issues first. 

Also, the incorporation of machine learning and natural language processing in the 
assessment process is a paradigm shift for vulnerability management. The ability of the system to 
scan complex Nessus scan files, provide context to information with up-to-date threat intelligence, 
and prioritize risks judiciously enables security teams to achieve greater accuracy and efficacy. 
This local deployment hybrid architecture, tailored precisely for MacBook Pro M2 hardware with 
safe cloud collaboration, is a union of cutting-edge technology and user-centric functionality that 
delivers scalability as well as data privacy for small, medium, as well as large enterprises. 

This spec document outlines the architecture of an AI-enabled tool that scans Nessus files, 
applies machine learning and natural language processing to analyze vulnerabilities, adds external 
threat feeds, and creates a prioritized list of threats. The focus is on installing this solution locally 
on MacBook Pro M2 laptops used by members of the HighViz team with a facility for secure cloud 
collaboration. This blended method delivers efficiency, scalability, and data privacy. 

 

  



  

 

  6

 

Problem Statement 

Today's vulnerability scanners like Nessus produce masses of valuable security 
information, but in most cases, this information is overwhelmed by huge amounts of noise. Large 
data sets created consist of thousands of entries with low-risk discoveries and false positives filling 
many of the entries. So, human analysts are left spending significant amounts of time manually 
reviewing scan outputs. This not only delays critical decision-making but also creates a climate 
where highest-priority threats might be overlooked due to the din of irrelevant information. 

Main issues with the current process: 

 Excessive Time Consumption 
 Slow Response Time 
 Additional Resource Allocation 
 Human Error 

The current manual process has several shortcomings. First, high usage of time is an 
ongoing issue; analysts spend many hours looking through scan results, which reduces overall 
operational efficiency. Second, prioritization using CVSS scores alone is not sufficient to measure 
the real-world impact and exploitability of vulnerabilities. This shortfall leads to resource 
misallocation, where potentially severe issues are handled with lower priority, and benign 
outcomes are over prioritized. Furthermore, the presence of false positives results in a noisy and 
unorganized dataset, which becomes challenging to generate actionable insights. 

Resource strain is a major issue. Small teams with limited budgets are overwhelmed by 
complex data, slowing decision-making and weakening security. Traditional methods fall short, 
highlighting the need for a smarter, automated approach. 

HighViz Security recognizes the pressing demand for a productive solution. The goal is to 
enhance vulnerability scanning with the use of contextual risk rating powered by artificial 
intelligence and robust rule-based systems. This enables the system to filter noise, prioritize threats 
by real-world severity, and ease analyst workload. It must run locally on MacBook Pros with 
optional secure cloud support for scalable, privacy-respecting deployment. Such a futuristic 
approach not only ensures improved operation efficiency but also greater precision of prioritization 
of vulnerabilities in an increasingly complex threat landscape.     



  

 

  7

 

Solution Vision 

Cyber Recon's product is a hybrid AI-enabled platform that streamlines vulnerability 
prioritization by transforming raw Nessus outputs into actionable risk insights. The platform parses 
scan files, enriches them with up-to-date threat intelligence (e.g., KEV, EPSS, Exploit-DB), and 
applies both natural language processing and machine learning to generate risk scores. This system 
improves both the speed and accuracy of risk assessments by combining textual context from 
vulnerability descriptions with structured threat data. 

 

 

This architecture runs efficiently on Apple M2 hardware, supporting local-first execution 
and secure optional cloud updates. The system leverages open-source tools including PyTorch, 
HuggingFace Transformers, and Pandas, ensuring cost-effective deployment and adaptability. 
Model synchronization with the cloud occurs securely via HTTPS and is optional, enabling 
centralized model updates and collaboration across deployments while preserving local data 
control. 

The dual-model design—BERT for natural language analysis and Random Forest for 
structured scoring—enables deeper vulnerability understanding. Rule-based overrides (e.g., KEV 
auto-prioritization) ensure critical issues are not missed. Reports clearly present prioritized 
vulnerabilities along with rationale, supporting quick, confident remediation decisions by security 
teams. 

 Before After (with Cyber Recon platform) 

Process Manual, time-consuming scan 
reviews Automated, AI-assisted triage and prioritization 

Accuracy Prone to false positives and 
overlooked threats Enhanced by enriched context and AI-driven scoring 

Speed Hours to days for triage Minutes on local hardware for 10,000+ entries 

Scalability Limited by team size and manual 
capacity 

Horizontally scalable and containerized for cloud 
future 

Security Risk of cloud dependence Local-first model with optional secure cloud sync 



  

 

  8

 

 

Function Requirements  

1. FR1 – Nessus File Parsing 

Scenario: 
As a security engineer, I need to ensure that Nessus scan outputs in CSV and JSON formats are 
properly ingested, parsed, and normalized, so that I can effectively analyze vulnerabilities and risk 
factors. 

Overview: 
The platform must ingest, and process Nessus scan outputs provided in both CSV and JSON 
formats. The parser should account for schema differences across Nessus versions and extract 
critical fields for risk evaluation. 

Key Details: 

 CSV Files: 
o Variability: Handle differences in header names (e.g., "plugin_id" vs. "pluginID") 

using configurable mapping rules. 
o Validation: Check each row for required fields (plugin ID, vulnerability title, 

CVSS score, CVE identifiers) and log any discrepancies. 
 JSON Files: 

o Normalization: Flatten nested structures to extract key fields (vulnerability title, 
affected hosts, CVE IDs, CVSS scores). 

o Filtering: Exclude unnecessary fields to streamline downstream processing. 
 Error Handling: 

o Validate file integrity; throw meaningful errors (e.g., missing CVE data in a specific 
record) and implement robust exception handling. 

 

  



  

 

  9

 

2. FR2 – Severity Normalization 

Scenario: 
As a developer, I need to normalize raw CVSS scores into consistent severity labels so that tools 
and analysts can easily interpret and act on the data accordingly. 

Overview: 
The system must normalize severity levels by mapping numerical CVSS scores to standard 
severity labels. 

Key Details: 

 Mapping Logic: 
o Define thresholds: CVSS 9.0–10.0 as Critical, 7.0–8.9 as High, 4.0–6.9 as Medium, 

and below 4.0 as Low. 
 Flexibility & Error Management: 

o Allow threshold values to be adjusted through configuration. 
o Handle missing or non-numeric values by assigning a default category or flagging 

them for review. 

3. FR3 – CVE Enrichment 

Scenario: 
As a vulnerability engineer, I want to enrich CVE records with metadata from the NVD so that I 
can provide the most complete and up-to-date context for risk evaluation. 

Overview: 
Enhance parsed vulnerability data with metadata from the National Vulnerability Database (NVD) 
to improve the quality and depth of vulnerability intelligence. 

Key Details: 

 Data Integration: 
o Enrich each record using CVE IDs to fetch vulnerability summaries, CWE 

classifications, updated CVSS metrics, and patch information. 
 Modes of Operation: 

o Real-Time API: Enable immediate queries with error and timeout handling. 
o Bulk Download: Support offline enrichment by scheduling periodic downloads 

and validating file integrity via checksums. 
 Fallback Procedures: 

o If enrichment fails, log errors and optionally use the latest available enrichment 
data 

  



  

 

  10

 

4. FR4 – EPSS Integration 

Scenario: 
As a security analyst, I need to have predictive exploitation scores incorporated into the 
vulnerability data so that I can assess the likelihood of exploitation and prioritize issues on real-
world risks. 

Overview: 
This system incorporates the Exploit Prediction Scoring System (EPSS) to enrich each CVE with 
a probabilistic risk score, enhancing threat prioritization based on exploit likelihood. 

Key Details: 

 Mechanisms: 
o Local CSV Lookups: Use pre-downloaded EPSS data with efficient indexing on 

CVE IDs. 
o Live API Queries: Support real-time data fetches with built-in retry and rate-limit 

strategies. 
 Default Handling: 

o Specify default EPSS values if no score is found or flag the record for further review. 
 Data Appending: 

o Normalize and attach EPSS scores to vulnerability records to assist in composite 
risk calculations. 

  



  

 

  11

 

5. FR5 – KEV Cross-Reference 

Scenario: 
As a vulnerabilities manager, I need to automatically flag vulnerabilities listed in the catalog so 
that I can prioritize threats with known exploits and respond more quickly to real-world risks. 

Overview: 
This system cross-references vulnerabilities against the CISA Known Exploited Vulnerabilities 
(KEV) catalog to elevate risk prioritization. 

Key Details: 

 Automation: 
o Regularly download and update the KEV feed (daily/weekly) into a local database. 

 Cross-Reference Logic: 
o For each CVE, if a match is found in KEV, mark the record with a “KEV flag” and 

automatically increase its risk level. 
 Audit Trail: 

o Log all cross-referencing events for transparency and compliance. 

6. FR6 – NLP-Based Risk Inference 

Scenario: 
As a threat analyst, I need an NLP model to interpret CVE descriptions and estimate risk or 
exploitability so that I can flag high-risk vulnerabilities. 

Overview: 
Leverage natural language processing with a fine-tuned BERT model to analyze vulnerability 
descriptions and predict exploitability or risk level. 

Key Details: 

 Model Training: 
o Fine-tune a pre-trained BERT model using labeled historical CVE descriptions. 

Train the model to interpret key phrases (e.g., “public exploits exist”). 
 Processing Pipeline: 

o Tokenize and pre-clean descriptions; output both a categorical risk label and a 
numerical confidence score. 

 Robustness: 
o Implement fallback handling for cases where the model inference fails or returns 

ambiguous results. 

  



  

 

  12

 

7. FR7 – Structured ML Scoring 

Scenario: 
As an engineer for security, I need a machine learning model to evaluate vulnerability data and 
output a risk score so that I can quickly prioritize issues based on data insights. 

Overview: 
This system leverages a structured ML model, such as Random Forest or XGBoost, to analyze 
vulnerability characteristics and produce a numerical risk assessment. 

Key Details: 

 Features: 
o Utilize inputs such as CVSS scores, attack vectors, privileges required, EPSS scores, 

KEV flags, and CWE tags. 
o Normalize numerical inputs and encode categorical variables appropriately. 

 Output & Explainability: 
o Generate either a numerical risk score (e.g., 0–100) or direct risk labels 

(High/Medium/Low), along with feature importance insights for transparency. 

8. FR8 – Composite Risk Score 

Scenario: 
As a threat analyst, I need a risk scoring system that combines outputs of both NLP and structured 
ML models so that I can make faster, more confident decisions using a single, interpreted risk 
score. 

Overview: 
This system combines outputs from natural language processing and structured machine learning 
models into a single score, providing both standardized scaling and easy to understand 
explanations. 

Key Details: 

 Fusion Techniques: 
o Integrate outputs using methods like weighted averages, stacking via logistic 

regression, or rule-based fusion. 
 Normalization: 

o Ensure the composite score is standardized on a predefined scale (e.g., 0–100 or 
categorical such as Low, Medium, High, Critical). 

 Explanation Module: 
o Generate explanations detailing how inputs from each model contributed to the 

final score. 



  

 

  13

 

9. FR9 – Risk-Based Output Generation 

Scenario: 
As a risk team leader, I need clear output from the AI in both human-friendly and machine-
consumable formats so that I can quickly assess threats, inform stakeholders, and integrate findings 
into operational workflows. 

Overview: 
This system generates comprehensive risk reports that are both readable for analysts and 
executives and understandable for automated systems, enabling fast decision making and 
simplistic integration. 

Key Details: 

 Output Formats: 
o Generate PDF reports with executive summaries and detailed sections; produce 

structured JSON and CSV files. 
 Content: 

o Include vulnerability names, affected hosts, risk levels, CVE summaries, EPSS 
scores, KEV flags, and AI justification details. 

 Integration: 
o Ensure seamless compatibility with ticketing systems and security dashboards. 

  



  

 

  14

 

10. FR10 – Local Threat Intelligence Database 

Scenario: 
As a data engineer, I need a reliable local database to store and manage vulnerability data, feeds, 
AI model outputs, and feedback so that I can have secure storage and full traceability for logging 
and analysis. 

Overview: 
This system uses a local SQLite database to serve as a centralized, secure storage for vulnerability 
data and human feedback, supporting both performance needs and traceability. 

Key Details: 

 Schema Design: 
o Create tables for CVE records, enrichment feeds (NVD, KEV, EPSS), AI 

predictions, and analyst feedback. 
 Performance & Security: 

o Index key fields for quick queries; enforce role-based access control (RBAC) and 
optionally encrypt sensitive fields using SQLCipher. 

 Audit Logging: 
o Record all modifications and updates to support traceability and forensic analysis. 

11. FR11 – Incremental Data Updates 

Scenario: 
As a systems engineer, I need to automate the retrieval and validation of threat intelligence feeds 
so that I can ensure the latest data is always available without risking integrity or losing important 
context. 

Overview: 
This system automates the scheduled updating of external security feeds (NVD, EPSS, KEV) 
ensuring data is the newest, previous data backed up for emergencies, and all changes are logged, 
all while maintaining integrity through validation mechanisms. 

Key Details: 

 Scheduling: 
o Use a cron-compatible CLI or scheduler to fetch data at predetermined intervals. 

 Integrity & Backup: 
o Validate downloads via checksums; back up older data versions before updating. 

 Audit Logs: 
o Maintain logs of all update events for future audits and troubleshooting. 

  



  

 

  15

 

12. FR12 – Analyst Feedback Loop 

Scenario: 
As a security analyst, I need an intuitive interface to review and correct AI-generated 
recommendations so that I can provide feedback that improves the model’s accuracy. 

Overview: 
This system enables the validation and refining of AI outputs through a dedicated interface, 
capturing feedback that directly informs model of improvements and incorporates retraining. 

Key Details: 

 Interface Options: 
o Offer both a secure web interface and a CLI for submitting feedback. 

 Feedback Capture: 
o Record annotations with CVE/plugin IDs, user identifiers, timestamps, and brief 

explanations. 
 Model Integration: 

o Use the feedback to drive periodic retraining, ensuring that the models evolve based 
on real-world validations. 

13. FR13 – Rule Enforcement System 

Scenario: 
As a risk analyst, I need to override AI-generated outputs based on custom company policies so 
that I can ensure critical cases are flagged accurately, even when the model’s predictions fall short. 

Overview: 
This system integrates a flexible ruling definition that can override AI outputs based on predefined 
conditions, allowing for human-in-the-loop control and real-time policy enforcement without 
interrupting system uptime. 

Key Details: 

 Rule Definition: 
o Use human-readable formats (such as YAML or Python) for defining override rules 

(e.g., “flag all KEV entries as Critical”). 
 Dynamic Updates: 

o Allow rules to be added or modified on the fly without downtime. 
 Conflict Resolution: 

o Implement predefined precedence and conflict resolution mechanisms for 
overlapping rules. 



  

 

  16

 

14. FR14 – Cloud Model Synchronization 

Scenario: 
 As a security analyst, I need to synchronize local models with a private cloud server so that I can 
keep the models current while ensuring data privacy, version control, and auditability. 

Overview: 
 This system securely manages the upload and download of machine learning models between 
local environments and a designated private cloud, using secure communication and detailed 
logging to ensure safe synchronization. 

Key Details: 

 Secure Transmission: 
o Use HTTPS with robust authentication (tokens or certificates) for model uploads 

and downloads. 
 Versioning & Anonymization: 

o Strip sensitive details before uploading; maintain version control to support 
rollbacks if needed. 

 Logging: 
o Log all synchronization events to ensure auditability and compliance. 

 

  



  

 

  17

 

15. FR15 – End-to-End Automation 

Scenario: 
 As a cybersecurity analyst, I want to automate the processing of risk data through a structured 
pipeline, so that I can generate consistent, auditable reports with minimal manual effort. 

Overview: 
 A CLI-based pipeline orchestrates multiple phases—from parsing input files to producing final 
risk reports—allowing customizable execution and robust integration into CI/CD workflows. 

Key Details: 

 Pipeline Structure: 
o Develop a master CLI tool or script that organizes the workflow into distinct 

phases: 
 File Parsing 
 Enrichment 
 Risk Inference (NLP & ML) 
 Composite Score Generation 
 Report Output 

 Customizability & Robustness: 
o Support command-line parameters for risk thresholds, output directories, and 

verbosity settings. 
o Include detailed logging and error handling at each stage to ensure repeatability and 

facilitate integration into CI/CD pipelines. 

 

  



  

 

  18

 

Performance (Non-Functional) Requirements 

To ensure seamless and effective operation in resource-demanding cybersecurity 
environments, the performance requirements of the vulnerability prioritization system are 
established along various dimensions. These non-functional requirements are processing speed, 
inference latency, resource usage, database query responsiveness, boot time, error tolerance, 
scalability, and execution security. The following are the criteria and supporting considerations for 
achieving these performance objectives.  

 

PR1 – Processing Speed 

Objective: 

The system must be able to parse and process an entire Nessus file containing up to 10,000 
vulnerability entries in five minutes on a MacBook Pro M2 with 16GB RAM. This will help with 
FR1.  

Implementation Considerations: 

 I/O Efficiency: Minimize file reading and parsing operations by utilizing asynchronous I/O 
methods and buffered data processing. Since the initial loading and preprocessing 
operation lays the foundation for subsequent operations, it is important to use efficient file 
reading libraries that don't use a lot of memory when handling large files. 

 Preprocessing Pipelines: Leverage multi-threaded or multi-process methods wherever 
feasible. For example, splitting the dataset into chunks and processing them in parallel can 
really reduce the data normalization time, error checking time, and initial formatting time. 

 Profiling and Optimization: Use performance profiling tools (such as Python's cProfile, Py-
Spy) during development. Identify bottlenecks at critical stages—such as parsing nested 
JSON arrays or normalizing CSV fields—then optimize these code sections with more 
efficient data structures (such as arrays or dictionaries) and using compiled extensions if 
necessary. 

 Resource Scheduling: Reduce unnecessary background services at runtime and use caching 
mechanisms to avoid duplicate processing when dealing with repetitive or similar datasets. 

  



  

 

  19

 

PR2 – Model Inference Time 

Objective: 

The goal is to ensure that both the Natural Language Processing (NLP) and structured 
Machine Learning (ML) models can compute and return a risk score for each individual 
vulnerability in under 100 milliseconds. Achieving this rapid inference time is critical for enabling 
large-scale batch processing—specifically, processing 10,000 vulnerability entries in under 2 
minutes on a GPU-accelerated Apple M2 system. This performance benchmark directly supports 
functionality described in FR6, FR7, FR8, FR9, FR12, and FR13, making it essential for meeting 
the broader system requirements. 

Implementation Considerations: 

 Efficient Batching: To maximize throughput and minimize redundant computation, 
inference routines should be designed to process vulnerabilities in batches instead of one 
at a time. This approach helps capitalize on parallelism provided by modern hardware, 
significantly reducing overall processing time. Efficient batching also minimizes the cost 
associated with repeatedly loading model weights into memory. 

 GPU Acceleration: The models should be trained and optimized using GPU-friendly 
frameworks such as PyTorch or TensorFlow. Leveraging GPU resources can drastically 
reduce inference latency. In addition, applying advanced techniques such as mixed-
precision training or model quantization can help further reduce computational demand, 
allowing models to operate faster with minimal loss of accuracy. 

 Latency Monitoring: To ensure system performance remains within acceptable bounds, 
real-time latency monitoring should be embedded into the production environment. This 
system will automatically log and track instances where inference time exceeds the 100-
millisecond threshold. If such events occur frequently, automated responses—such as 
adjusting batch sizes, reallocating resources, or triggering fallback models—should be 
initiated to preserve overall performance and reliability. 

 Edge Case Handling: Some inputs may be unusually complex or difficult for the model to 
process within the target latency. These edge cases should be handled with care. Strategies 
include routing such cases to a separate processing thread to avoid blocking the main 
pipeline or flagging them for manual review if delays exceed acceptable thresholds. 
Graceful degradation in these situations ensures system robustness without compromising 
throughput for standard cases. 

  



  

 

  20

 

PR3 – Memory Usage 

Objective: 

Maintain maximum RAM usage at 2GB under typical circumstances, despite working with 
huge data sets and intricate models. Most closely relates to FR15. 

Implementation Considerations: 

 Memory Profiling: Use intense memory profiling as a portion of the development process 
through tools such as Valgrind, memory_profiler for Python, or the built-in debugging 
capabilities in the choice programming language. Monitor memory usage during normal 
and peak operations to ensure adherence to the 2GB limit. 

 In-Memory Data Processing: Minimize data structures' overhead. For instance, we prefer 
streaming data processing methods that don't require loading entire files in memory 
simultaneously. 

 Garbage Collection Tuning: Tune the runtime's garbage collection (GC) settings 
aggressively to free objects promptly, especially for languages like Python where GC 
behavior can be tweaked for more aggressive memory cleanup. 

 Cache Management: Implement cache control mechanisms that either flush ephemeral data 
stores periodically or apply least-recently-used (LRU) policies to prevent memory bloat 
from highly accessed but non-prioritized data. 

PR4 – Database Query Latency 

Objective: 

Ensure any query of the local threat intelligence database (e.g., cross-referencing CVE data 
with KEV or EPSS datasets) completes within 50 milliseconds. This corresponds with FR2, FR3, 
FR4, and FR5.  

Implementation Considerations: 

 Indexing Strategies: Organize the database schema with proper indexing of significant 
columns, such as CVE IDs, timestamps, and foreign keys linking threat intelligence 
datasets. 

 Efficient Joins: Optimize SQL queries and design join strategies with little overhead, 
potentially leveraging in-memory databases or caching layers for frequently executed 
queries. 

 Benchmarking: Run regular performance benchmarks with real queries under a variety of 
load conditions. Use these benchmarks to continually tune query performance and adjust 
indexes as the dataset grows. 

 Query Optimization Tools: Use database native optimization tools (e.g., SQLite's 
EXPLAIN command) to identify and correct slow queries. 



  

 

  21

 

PR5 – Boot Time 

Objective: 

The application should fully initialize and be ready for user interaction within 15 seconds 
of launch. This most closely relates to FR15.  

Implementation Considerations: 

 Startup Sequencing: Order the loading of critical components during startup to facilitate 
immediate use of core features. Delay less important tasks (like background updates or 
diagnostics) until the main interface is available. 

 Lazy Loading: Employ lazy loading in modules or libraries not immediately required are 
loaded only when actually used for the first time. This reduces program effort at startup. 

 Optimized Dependency Management: Minimize external dependencies and use compiled 
binaries where possible to prevent startup overhead. 

 Startup Testing: Occasionally test boot times in varied environments and optimize the code 
path executed during the initial boot process. Document the configuration requirements 
backing the fastest possible boot times. 

PR6 – Error Resilience 

Objective: 

The system must handle corrupted or truncated Nessus files, with verbose error messages 
and recovery mechanisms to continue processing valid records. This relates to FR1.  

Implementation Considerations: 

 Exception Handling: Implement a strict exception handling mechanism that catches file 
I/O errors, data validation failures, and parsing anomalies at each stage of the data 
processing workflow. When a corrupted record is encountered, log an error with sufficient 
context to facilitate debugging. 

 Fallback Strategies: Use fallback strategies such as skipping faulty records without 
terminating the whole process. Maintain a record of skipped entries so these can be 
reviewed and corrected as necessary. 

 User Notifications: Have a user notification system that warns of critical errors in a manner 
that is actionable and clear. This should include recommendations for data cleansing or 
external verification in case of repeated issues. 

 Self-Healing Capabilities: Investigate adding automated recovery capabilities that attempt 
to repair minor data inconsistencies (e.g., missing closing braces in JSON files) and log the 
repairs undertaken. 

  



  

 

  22

 

PR7 – Scalability Baseline 

Objective: 

The system should support future cloud deployment despite being designed for local use. Key 
components must be modular and containerized, with horizontal scaling capabilities. This aligns 
with FR10, FR11, FR14, and FR15. 

Implementation Considerations: 

 Modular Design: Organize the system into loosely coupled modules (e.g., ingestion, 
inference, reporting) with well-defined interfaces to allow independent scaling. 

 Containerization: Containerize critical components (e.g., with Docker) for easy 
deployment. Use orchestration tools like Kubernetes for managing containers. 

 Distributed Processing: Design with future support for distributed tools (e.g., Spark, Dask) 
to handle large data volumes efficiently. Document interface standards for easy integration. 

 Load Testing: Perform local load tests to identify bottlenecks and use findings to inform 
scalable cloud-ready designs. 

  

PR8 – Security of Execution 

Objective: 

At runtime, the platform must avoid storing sensitive data unencrypted, including 
hostnames and IPs. Temporary files should be securely managed and deleted after use. This aligns 
with FR15. 

Implementation Considerations: 

 Data Encryption: Encrypt sensitive data during processing at both the file and application 
levels using secure libraries. 

 Secure File Handling: Open temporary files with restricted permissions and ensure they're 
deleted promptly after use. 

 Audit Trails: Log all sensitive operations, and protect logs with proper access controls to 
support traceability. 

 Compliance Testing: Regularly audit for vulnerabilities and update security practices based 
on findings. 

 Runtime Isolation: Use containers or VMs to isolate runtime memory and prevent leaks 
from dumps or snapshots. Document these in the security policy. 

  



  

 

  23

 

Environmental Requirements 

 

Requirement Constraint & Key Tools/Libraries 

ER1 – Platform Support macOS 13+, Apple M2 (Metal, Core ML, MPS) 

ER2 – Offline Capability 
Pure-local execution (SQLite 3, Python feed-updater 
scripts) 

ER3 – Open-Source 
Libraries 

Permissive-license only (MIT/BSD/Apache 2.0) 

ER4 – Local Execution No cloud; Core ML & Metal inference on-device 

ER5 – Storage ≤10 GB total (Zstandard/LZ4 compression) 

ER6 – Encrypted Disk FileVault + SQLCipher + NSFileProtectionComplete 

 

ER1 – Platform Support : 

The platform should natively support macOS 13 and later and be fully optimized to run on Apple 
M2 processors. Native support delivers native integration with macOS-exclusive features and 
enhances performance by leveraging the hardware features intrinsic to the Apple M2 processor. 
The solution should also utilize Apple Metal to accelerate computationally intensive operations 
such as model training and inference. Utilizing Metal not only accelerates these operations by 
going directly to the GPU but also maintains the platform responsive during real-time analysis. 
With Apple Silicon optimization, the system runs with increased energy efficiency and speed, 
which are crucial in the scenario of time-sensitive vulnerability analysis. 

ER2 – Offline Capability : 

The system should be capable of running completely offline under normal conditions in order to 
offer maximum security and privacy for data. The central functionality—vulnerability parsing, 
model inference, and report generation—must be functional locally where there is no internet 
available. Offline support is necessary in the case of situations where threats to data exfiltration 
must be minimal or where network utilization is constrained by security limitations. Background 
updates for critical threat feeds such as CVE, KEV, and EPSS can be run autonomously and are 
designed particularly for supporting critical air-gapped environments. These updates are planned 
and controlled so that the system remains in offline integrity while periodically benefiting from 
data enrichment and threat intelligence enhancements. 

 

 



  

 

  24

 

ER3 – Open-Source Libraries: 

All libraries and tools included in the platform must be open-source and licensed on permissive 
terms such as MIT, BSD, or Apache 2.0 to promote transparency, flexibility, and community 
development. This requirement enables developers to have access to the source code in its entirety, 
modify it as necessary, and benefit from peer review and community contribution. Proprietary 
APIs or dependencies are permitted only if thoroughly reviewed and personally approved by the 
project sponsor. By embracing open-source software, the platform minimizes legal liabilities and 
avoids vendor lock-in, thereby providing a robust and economically sustainable development 
platform for continued improvement. 

ER4 – Local Execution Requirements: 

The architecture demands that no cloud-based compute resources should be employed in executing 
the application. The computational operations—like model inference, data parsing, and storage—
should be executed on the local machine. This local execution model is crucial for ensuring that 
sensitive information will remain within the secure confines of the deployment environment. In 
practice, all necessary data as well as the necessary models and support libraries must be preloaded 
locally. This not only reduces latency significantly but also enhances data security by eliminating 
the risk of transmitting sensitive information over external networks. 

ER5 – Storage Requirements 

The total disk usage of the system should not exceed 10GB, even with the addition of complete 
NVD mirrors and enhanced local databases. This is a threshold that requires careful planning of 
data storage plans and adherence to good data management practices. Compression procedures, 
for instance, might be utilized to compress older, less recent data to make room on the disks 
without compromising data integrity or accessibility. Restricting the storage space footprint 
ensures the platform will continue to be suitable for deployment on moderate storage device 
offerings while providing maximum performance. Long-term system sustainability will demand 
effective data cleanup and archiving strategies. 

ER6 – Encrypted Disk Access: 

Security at the storage level is critical in protecting confidential information. FileVault encryption 
must be enabled on the deployment devices to protect local drives from intrusion. Also, all 
databases that store enriched vulnerability information must have optional SQLCipher encryption. 
In addition, strict adherence to macOS file permission requirements should be observed to restrict 
access and further protect data stored. This security model with multiple layers ensures that 
sensitive information is encrypted both in transit and in any temporary storage, hence avoiding 
potential breaches and conforming to industry best practices in data protection. 



  

 

  25

 

Potential Risks: 

 

R1 – Model Bias 

AI models used for prioritizing vulnerabilities can be biased if the training data is small or skewed. 
For example, if less popular CVEs are underrepresented, the model can downrate their risk. This 
bias can lead to skewed threat assessments that undermine overall security. 

Mitigation Strategies: 

 Data Augmentation: Supplement the training dataset with synthetic or more real-world 
examples to cover a broader set of vulnerabilities. 

 Rule-Based Overrides: Use rules to trigger alerts on specific vulnerabilities (e.g., the ones 
in the KEV list) independent of model output. 

 Continuous Evaluation: Regularly retrain the model using newer data and performance 
metrics to detect and rectify bias over time. 

R2 – Misclassification 

Misclassification is a significant threat because the system can misrank vulnerabilities—
overestimating low-risk threats or underestimating high-impact threats. Such errors can cause 
resource misallocation and increased exposure to threats. 

Mitigation Strategies 

 Human-in-the-Loop: Have a feedback loop to enable security analysts to edit and validate 
risk scores, using their input in further model tuning. 

 Explainable AI: Provide transparent, understandable results that describe the factors behind 
each risk score, enabling analysts to verify and trust the automated result. 

 

 

  



  

 

  26

 

R3 – Dependency Vulnerabilities 

The system relies on a collection of third-party libraries and tools, each of which may have 
vulnerabilities within them that can be exploited. Such dependency issues can leave the system 
open to attack even if its code is secure. 

Mitigation Strategies: 

 Regular Security Scans: Include Bandit or Safety in the development cycle to scan 
dependencies for known vulnerabilities on a regular basis. 

 Dependency Management: Maintain an updated list of all libraries and patch or update 
them as soon as they are made available to minimize exposure. 

R4 – Performance Bottlenecks 

Performance bottlenecks could cause the system to slow, particularly on legacy hardware. 
Inefficiencies in parsing, model inference inefficiencies, or database querying inefficiencies could 
decelerate critical operations and make timely remediation challenging. 

Mitigation Strategies: 

 Profiling and Optimization: Profile with tools to identify and correct slow code segments 
or inefficient queries. 

 Load Testing: Perform periodic stress and load testing in order to simulate peak usage so 
that the system will be kept within acceptable responsiveness limits. 

 Resource Monitoring: Use constant monitoring of resource usage and adjust algorithms or 
hardware configuration as needed. 

 

 

 

  



  

 

  27

 

R5 – Threat Feed Staleness 

Accuracy of risk assessment depends on fresh threat intelligence. Unless CVE, EPSS, or KEV 
feeds are periodically updated, the system may return stale recommendations without considering 
new threats. 

Mitigation Strategies: 

 Automatic Schedule Updates: Install provisions for periodic, scheduled updates of all 
threat feeds, even in air-gapped infrastructures. 

 Alert Systems: Install notifications to indicate failed updates or data freshness 
inconsistencies, necessitating immediate corrective action. 

R6 – Cloud Security Breach 

Although local execution is promoted by the platform, voluntary integration of the model updates 
or teamwork in the cloud introduces the danger of cloud security breaches. When the cloud link is 
compromised, sensitive vulnerability details are revealed.  

Mitigation Strategies: 

 Secure Transmission: Restrict cloud interaction to HTTPS mutual authentication, whereby 
data exchange would be encrypted. 

 Strict Access Controls: Limit cloud interactions to only what is necessary and perform 
regular audits to verify that the security posture of the cloud infrastructure is aligned with 
strict standards. 

R7 – Legal Compliance Risk 

Failure to comply with licensing agreements or data retention policies may result in significant 
legal liabilities, financial penalties, and reputational harm. Open-source components necessitate 
strict compliance with their license terms. 

Mitigation Strategies: 

 Compliance Audits: Regularly audit the software modules of the platform to ensure all 
open-source licenses (e.g., MIT, BSD, Apache 2.0) are being implemented correctly.  

 Documentation and Policies: Maintain proper documentation of dealing with data, 
retention policies, and licensing compliance. Internal audits and legal reviews must be 
scheduled to ensure ongoing compliance. 

  



  

 

  28

 

Project Plan: 

The project is structured into six principal phases; each aligned with specific functional 
specifications and objectives to deliver a working proof-of-concept by week 12. Throughout the 
project execution, each phase will have weekly internal discussion sessions, sponsor comment 
sessions, and continuous unit testing to ascertain that each unit meets performance and quality 
objectives. 

Phase 1 (Weeks 1–2): Parser and Data Normalizer Prototyped 

In this initial phase, the priority is on developing a prototype of the data parser. The parser will 
convert both CSV and JSON formats of Nessus files and normalize them to determine main data 
elements. This milestone paves the way for the rest of the project by giving confidence that raw 
data is correctly transformed and formatted for analysis. 

Phase 2 (Weeks 3–5): Model Selection and Training 

In the second phase, the emphasis is on selecting and training both structured machine learning 
models and NLP models. The team will tune a BERT model for text-based inference, compare 
various algorithms, and apply models such as Random Forest for structured data. The team will 
conduct weekly model performance tests against specified latency and accuracy goals. 

Phase 3 (Weeks 6–7): Risk Prioritization Logic Implemented 

This stage combines the trained models with risk scoring logic. The system will use both AI-based 
risk scores and rule-based overrides to generate a prioritized list of vulnerabilities. The goal is to 
make sure that important vulnerabilities are properly flagged, considering context from both the 
NLP and structured ML methods. 

Phase 4 (Weeks 8–9): Report Generator and Local DB Developed 

Once risk scores and data are set up, focus is directed towards implementing the report generator 
and local database. The report generator will consume prioritized vulnerabilities and generate 
human-readable outputs (e.g., PDF reports and CSV/JSON exports), while the local database will 
store raw and enriched data for fast lookups and audit trails. This integration will be required for 
operational usability and scalability in the future. 

  



  

 

  29

 

Phase 5 (Weeks 10–11): UI + CLI Interfaces Finalized 

User interfaces become the focus of attention as both graphical user interface and command-line 
interface are finished. These interfaces will allow analysts to use the system, view reports, and 
provide feedback. Iterative design refinement and usability testing are extremely crucial activities 
in this stage. 

Phase 6 (Week 12): Full System Integration and Testing 

The final phase is for the integration of all components into one system. End-to-end testing and 
rigorous integration will make sure that the system meets all the functional and non-functional 
requirements. The final deliverable includes complete documentation, a working proof-of-concept, 
and a demonstration for key stakeholders. 

 

 

 

 

 

 

  



  

 

  30

 

Conclusion 

The AI-Powered Vulnerability Mapping System developed by Team Cyber Recon 
addresses an acute need in modern cybersecurity. In today’s rapidly evolving world, data breaches 
and threats are increasing at unbelievable rates. Companies, like HighViz Security, require cutting-
edge tools with the ability to significantly reduce the workload for resource-limited in-house teams. 
Traditional vulnerability analyses approaches are often slow from manual overhead and error 
prone. The project responds directly to these challenges, offering a transformative approach that 
not only improves detection and prioritization but also alleviates the inefficiency and inaccuracy 
of traditional analyses that leave critical threats unmediated during false positives and long, manual 
review cycles. 

In this document, we have demonstrated an end-to-end solution leveraging a hybrid AI 
approach of natural language processing and structured machine learning. The system is able to 
successfully parse and normalize very large quantities of Nessus scan data sets as well, as enrich 
them with real-time threat intelligence, and rank the vulnerabilities in a meaningful and complete 
manner. This evaluative nature of the AI is backed by the training from previous data sets to offer 
both a faster analysis to the traditional counterpart as well as accurate review that strays from 
human error. 

Understanding of hardware of companies like HighViz Security is a focus for the system 
due to the constraints of such limitations. Their Apple M2-based systems are used company-wide 
and have been the defined software that is well known. By running natively on the hardware with 
the possibility of secure cloud collaboration, the platform meets stringent performance, security, 
and budget demands. Each aspect of the system—from parser prototyping all the way through 
model training, risk prioritization, and final report generation—has been carefully designed to 
provide actionable intelligence that guides quicker, smarter remediation efforts. 

Implementation into the pre-existing system is a solution to the issues plaguing these in-
house and resource-limited teams. It promises revolutionary benefits through the reduction of 
analyst overhead, improved customer satisfaction, and a scalable technical foundation for future 
artificial intelligence advances in security. The developments presented in this report not only 
demonstrate good project planning and technological discipline but also chart a clear path to 
deployment and long-term system evolution. We feel that this solution will not only solve current 
issues in vulnerability management today but also lay the groundwork for continued improvement 
and evolution in the ever-changing cybersecurity landscape. 

 

 

 

  



  

 

  31

 

Glossary 

 CVSS – Common Vulnerability Scoring System 
 CVE – Common Vulnerabilities and Exposures 
 KEV – Known Exploited Vulnerabilities (by CISA) 
 EPSS – Exploit Prediction Scoring System 
 BERT – Bidirectional Encoder Representations from Transformers 
 ML – Machine Learning 
 NLP – Natural Language Processing 
 SQLCipher – An SQLite extension for database encryption 
 CLI – Command Line Interface 
 UI – User Interface 

 

Appendices 

Appendix A – Sample Nessus Export Snippet (CSV & JSON) 
Appendix B – Risk Score Calculation Example 
Appendix C – Performance Benchmark Results 
Appendix D – Training Dataset Description 
Appendix E – Technology Stack and License Table 
Appendix F – Screenshots of UI Mockup 
Appendix G – Risk Prioritization Rule File Template 

 

 


