
Software Design Document - Fall
9/30/2022

Project:
C & I Doctoral Tracking Tool

Project Sponsor:
Gretchen McAllister

Faculty Member:
Michael Leverington

Team name:
What’s Up Doc

Team Members:
Adam Larson (Lead), Brandon Shaffer, and Eddie Lipan

Team Mentors:
Daniel Kramer

Version 1.1



Table of Contents: Pages

1.0 Introduction 3

2.0 Implementation Overview 5

3.0 Architectural Overview 6

4.0 Module and Interface Description 8

5.0 Implementation Plan 13

6.0 Conclusion 15

2



1.0 Introduction
Attending and graduating college constitutes some of the most formative and

adversarial years of a person’s life. According to a census taken by the Education Data
Initiative in 2021, 3.1 million post baccalaureate students are enrolled in graduate
programs at universities in the United States1. Generally these students are striving to
learn and better themselves each day of attendance but many will likely face similar
adversities, such as timeliness, deadlines and examinations, all while balancing social
lives or work schedules. With all these stressors, graduate students should be able to
reliably track and manage their graduate program without fear of adding additional
stress.

Most undergraduate courses are implemented through Learning Management
Systems (LMS) such as Blackboard Learn or Canvas, which act as course delivery and
grade feedback tools. This is possible as most undergraduate courses classify as
“pass/fail” or fall under some version of the standard A-F grading system. Assignments
and examinations from class to class are normally quite rigid in that they pertain to
lectures or chapters of an assigned reading, thus they may be outlined and planned
before a semester even begins. This rigidity is absent in graduate school as graduate
students perform activities that are less quantifiable, such as shadowing mentors and
researching. Therefore, it is considerably harder to deliver the graduate program using a
LMS.

The Coordinator of the Curriculum and Instruction (C&I) doctoral program at
Northern Arizona University (NAU), Gretchen McAllister, Ph.D., and Administrative
Services Assistant, Michele Benedict, have both experienced the shortcomings of
Blackboard Learn firsthand. As a result, neither is able to track the milestones of their
graduate students. In order to attain candidacy in the C&I Ph.D program, students must
complete a minimum of 60 graduate-level course units, where the average course is 3
units. C&I graduate students must also complete professional development
requirements, comprehensive written and oral exams, a qualifying research paper, get
the approval and assignment of a dissertation committee, and get the submission of an
approved dissertation prospectus.

1 Hanson, Melanie. "College Enrollment Statistics [2022]: Total + by Demographic." Education Data
Initiative. 22 Jan. 2022.
<https://educationdata.org/college-enrollment-statistics#:~:text=Report%20Highlights.,students%20are%2
0in%20graduate%20programs.>.

3

https://educationdata.org/college-enrollment-statistics#:~:text=Report%20Highlights.,students%20are%20in%20graduate%20programs
https://educationdata.org/college-enrollment-statistics#:~:text=Report%20Highlights.,students%20are%20in%20graduate%20programs


Feedback is a vital aspect of learning and for undergraduates, this can be
achieved through a simple three step process; take an exam, turn in said exam, and
receive a grade. However, as discussed above, providing graduate student feedback
through an LMS is not feasible. At present, Gretchen and Michele are having graduate
students funnel all deliverables to a single computer via email which are then held
locally in folders labeled with the student’s name. No further organization is performed
other than storing the deliverable into the appropriate students’ folder. Graduate student
grading and submission inquiries are achieved by emailing Michele directly, who then
browses the files locally, and provides feedback via email. The current data
management process is inefficient and taxing for both parties involved.

Team What’s Up Doc’s solution is an intuitive website application, allowing
graduate students to track their progress and receive daily motivational messages up
until candidacy. The website application will also allow faculty to view student progress
and create detailed reports based on their remaining milestones. Given that some
students may not have a technical background, the app would require an intuitive,
visually appealing dashboard making it easier to upload deliverables and track
progress, all while avoiding the time-consuming correspondence with Michele. Another
goal of the website application is to avoid manual data entry for either Gretchen or
Michele.

The purpose of this Software Design document is to provide a blueprint for our
final website application. This will include outlining our overall architectural design and
outlining our implementation plan of said design. This document will expose any
design/implementation flaws ahead of time so that we may address them accordingly
before they become real issues. Team What’s Up Doc will be sure to keep this
document updated in order to accurately reflect our current software design.

4



2.0 Implementation Overview
The two main goals of Team What’s Up Doc’s solution is to offload the data

management roles required by faculty, and to provide graduate students with a proper
way to track their status in the doctoral program. Our solution to the data management
problem within the NAU C&I doctoral program is an approachable website application
that helps track the graduate students' milestone progress. Considering this project is
for a CoE and not a business, there will not be a producer-consumer pattern. Instead,
the website application will require a certain level of accountability out of the graduate
students as they will be tracking their own milestones, but if used properly it could be
invaluable.

In order to implement our website application, Team What’s Up Doc is managing
a MySQL database to better tackle the sensitive data at hand. On the front end, we will
use HTML forms for the website application. We then chose to style our HTML with CSS
and incorporate the back end and front end using Spring Framework.

Team What’s Up Doc chose to move forward using the relational-database
MySQL for a number of reasons. The first reason was that our team members had
familiarity and experience with MySQL which would greatly help us in the
implementation process. Second, MySQL is open source, and trusted by many
programmers throughout the community. This entails that MySQL is rich with great
documentation and ensures that if any problems are met, we can receive guidance from
the MySQL developer community.

HTML and CSS were chosen on the front-end for similar reasons. Both of Team
What’s Up Doc’s front end programmers have experience with web programming and
both have used HTML and CSS to successfully style and create intuitive web pages.
Not only do we have experience and familiarity with the two web programming
languages, but we also appreciate its simplicity and the fact that HTML and CSS web
pages can be opened on all platforms.

Lastly, Team What’s Up Doc chose to move forward with Spring Framework to
meld together our front end and back end. We chose Spring Framework due to its
abundance of packages, such as Spring Boot, Spring Authentication, and Spring
Security, as well as its great documentation. Each package can be implemented
through dependency-injection which allows us a significant level of control throughout
our web application.

5



3.0 Architectural Overview

Figure 3.1 - Architecture

The architecture of our system involves a web application, server, and database,
all hosted through NAU servers. Communication between components requires an
internet connection to access and retrieve data.

Figure 3.1 begins by having a user attempt to access the web application and be
redirected with Google’s Sign-In option to the NAU servers. If a graduate student email
is recognized, they will be taken to the graduate student home page. From this home
page, students will be able to view milestone widgets horizontally across their screen,
and upon clicking each milestone, they will be presented with a taskbar on the left-hand
side of the interface that tracks smaller tasks within a larger milestone. Once signed in
with their school email account, the web app will request said students' files and
information based on their alphanumeric student ID. The server will receive the request
and query the MySQL database, returning either that student's information or an error
message if the student doesn’t exist. This information is returned to the web application
from the server and displayed by code on the home page. Modifying requests are
handled similarly but change, add, or remove data within the database. Administrative
roles, for developers and faculty, will have additional post and delete requests to add
and remove students. If a student wants to upload or download a document, they can
do so straight through this student home page. The only other page the student will be
able to access is an extra files page for extraneous files that may not pertain to a
particular milestone.

6



In the event an administrator email is recognized during Google Sign-In, the
administrator will be taken to an admin home page. From this home page, the
administrator will be able to search and filter sensitive program information in order to
view the overall progress of a graduate student or of the program as a whole. The
administrator will also be able to add and remove students from the program through
this admin home page. Due to the inherent capabilities available to an administrator
from the admin home page, it is imperative that after Google Sign-In is bypassed, the
web application is able to properly discern whether the email used is a student email or
a faculty email. This vital security check will be done by our REST API middleware,
which allows us to maintain great levels of security, authentication and control. The
implementation of our architectural design will result in a responsive and secure website
application that assures the right people are seeing the right information.

7



4.0 Module and Interface Descriptions

Web Application

User-Interface

The User-Interface will consist of a webpage where a student or faculty member
would be able to access the database. HTML forms will take user input and simplify the
database request process from a user’s perspective. This benefits the users who will
not all be computer literate, and would otherwise struggle with accessing their files. The
faculty will have the ability to access various students’ information, while a student will
only be able to access their own. Whether a user is faculty or a student will be acquired
by the implementation of Google Sign-In. Google Sign-In will be implemented in order to
determine whether a user is faculty or a graduate student. This authentication process
will affect the way the User Interface looks, depending on what type of user they are
identified as.

Figure 4.1 - Interface UML Diagram

Google Sign-In

While no sensitive information will be stored within our program, Google Sign-In
is implemented to securely authenticate and deliver the appropriate information. The
benefit of this is that all NAU students and faculty school accounts are managed by
Google, and is a work around to not being able to connect directly to student accounts.
Students and faculty will provide Google with their NAU email address, routed to the
CAS login page, then back to our page to have their information displayed. The REST
API will process this information based on login approval.

8



Figure 4.2 - UML Package diagram for all rest API components

9



Rest API

Spring Boot

The API being used for our server application is with Spring Boot. This is a Java
based application that allows for significant extension through the use of available
libraries and manages the overhead set up to allow more focus on functionality. It is an
entirely standalone, Maven (Gradle also available) based application using a
pre-configured Apache Tomcat web server. Initialization through https://start.spring.io
provides all required dependencies by means of a .zip file and allows additional
modules to be included automatically. Once initialized, web controllers responsible for
receiving and sending information are necessary and operate on desired HTTP
requests (get, post, put, and delete for this product) and data. Annotations are used on
all classes and many fields and methods allowing the inner working of the framework to
find and utilize the desired functionality.

Spring Security

Spring Security is a module that is not included in the base Spring Boot program.
This additional feature allows security features and communications to be easily
integrated into the application. Adding this module to the Maven project is done simply
by adding a dependency to the pom.xml and rebuilding the project if not done
automatically. Policies are required to be set to utilize this module and are provided via
either the application.properties file or an additional class with connections to the
security module.

The additional features provided by this module include connectivity to large tech
company login API’s (Google, Facebook, GitHub, etc.) for login functionality without
setting up a local authentication system. This application is also taking advantage of
credentials that must be supplied when the web application is making requests.
Currently this is set using a randomly generated alphanumeric name:key credential,
both of which are 25 characters long, varying case, and numbers 0-9. This module
includes a significant amount of features, however these two are in use.

Spring JPA

This is another module that is supplementary to the Spring Boot program. For our
program to effectively track student data and files a database must be used. Spring JPA
allows for incredibly fast connectivity and implementation. Unlike the Java Database

10

https://start.spring.io


Connectivity (JDBC) module, JPA prioritizes minimal code and utilizes keywords in
methods and fields via a CRUD (create, read, update, delete) repository interface. If
necessary, custom SQL commands can be created to retrieve desired information within
this interface. A JPA repository interface is also available if pagination or sorting is
required, though the CRUD interface will suffice.

Figure 4.3 - MySQL Table Structure

11



Fig 4.4 - MySQL Database connections

Database

MySQL

The database that will be used is MySQL. This was chosen due to familiarity,
popularity, and documentation. The database structure consists of three tables: a
primary user table; a primary file table; and a secondary file table. The user table holds
the student first/last names, student ID (alphanumeric), and admin status (boolean).
Admin status in its current state refers to either group members or faculty. File tables
are identical structurally, however files will be filtered into these based on file name by
the REST API. Structure of these tables include the file name, description, type, data,
upload time, and student ID (alphanumeric).

12



Figure 5.1 - Fall Semester Gantt Chart

13



5.0 Implementation Plan
(See Figure 5.1 above for Timeline)

Back-end implementation has largely been completed, with the exception of the
API/Database storage. The task is awaiting allocation of server space from NAU ITS,
which is also delaying the migration task. Front-end implementation is underway, though
has encountered several delays. Initializing the website was extended to readjust the
design to better meet client expectations. During our first meeting of the semester with
Gretchen, she expressed more specific expectations for the appearance of the
front-end, as well as brought attention to a miscommunication on what user data would
be connected to. The confusion was whether the database would be sorted by a
student’s student ID, the seven digit ID, or the NAU login. A work around was agreed
upon due to the fact that we do not currently have access to student ID’s. This delay
was further exacerbated by illness and temporary complications with communication
within the team. Connecting the website to google’s login system and creating the
website’s primary interface is on track for being completed on schedule. Our current
schedule is set to ideally have our product ready for its alpha demonstration a week
early to allow for any further delays or complications.

Testing is being conducted during the associated tasks as well as plans for future
tests after the alpha demo to refine our application. To ensure data security we are
testing to ensure data cannot be accessed by sources lacking the proper credentials.
The database’s access via GET, POST, PUT, and DELETE methods as well as admin
access to methods will be tested, as well as HTTP return codes, during the website’s
API connection. HTTP error codes will be tested for and should lead to redirection to an
error page. The access methods were tested for on the database side using the Spring
Unit Test Suite. After the alpha demonstration testing will shift towards ensuring a
positive user experience, using a class that Gretchen has selected. These tests will
largely focus on elements like the color scheme of the interface, readability of the font,
and other more subjective aspects of the user experience.

14



6.0 Conclusion
Successfully completing a graduate program is no small task, and it becomes

even more challenging if a student has trouble tracking their progress within the
program. Team What’s Up Doc aims to reimplement the data management process for
graduate students enrolled in the NAU C&I doctoral program through an easily
accessible website application. A working College of Education website application
would introduce an efficient data management mechanism for C&I graduate students
and offload a tremendous amount of stress for our clients, Gretchen McAllister, Ph.D.,
Coordinator of the NAU C&I doctoral program and Michele Benedict, Administrative
Services Assistant. Not only would this application reduce the stress of our clients, but if
utilized properly, it would greatly reduce the stress associated with tracking a graduate
level program and give the students valuable feedback on their progress within the
program.

This Software Design Document is meant to provide the architectural details or
“blueprint” of our final product. By explicitly outlining our architectural design and our
implementation plan, we are able to better identify any potential problems that might
arise from our particular design choices. This ability to plan and foreshadow possible
outcomes based on our design choices could save Team What’s Up Doc from
headaches in the near future during implementation of the website application. If any
changes need to be made, the continual updating of this document will serve to reflect
Team What’s Up Doc’s current software design elements and implementation plans.

As of the completion of this Software Design Document, Team What’s Up Doc
has implemented the majority of their back end components as well as the middleware
that will be connecting our website application to our MySQL database. We are
currently in the process of designing and implementing the front end of our website
application, specifically our login page, which will utilize Google Sign-In, as well as our
two different user home pages. Our client, Dr. Gretchen McAllister, is requiring a certain
look and feel for her website application, therefore the front end User Interface will
constantly be changing and adapting as we meet her needs and the students needs.
Finally, Team What’s Up Doc has been in the process of acquiring a permanent server
location for our website application and database through NAU. As a result, we will have
to migrate to NAU servers when available.

15


