
MapONE
Final Report

May 5, 2022

Sponsors:
Planetary Geologic Mapping Program, USGS Astrogeology Science Center

Dr. Sarah Black, Research Physical Scientist
Marc Hunter, IT Specialist

Faculty Mentor:
Melissa D. Rose

Team Members:
Samantha Milligan

Michael Nelson
Ricardo McCrary

Jacob Stuck

Overview: The purpose of the Final Report document is to summarize the project’s
development.

1



Table of Contents
1. Introduction 3

2. Process Overview 3

3. Requirements 5

4. Architecture & Implementation 6

5. Testing 7

6. Project Timeline 8

7. Future Work 9

8. Conclusion 9

9. Appendix A: Development Environment & Toolchain 10

9.1 Hardware 10

9.2 Toolchain 10

9.3 Setup 10

9.4 Frontend Installation 11

9.5 Backend Installation 12

9.6 Production Cycle 14

2



1. Introduction
The planetary science community develops, collects, and distributes cartographic research on the

solar system. Scientists use planetary maps and related resources for various reasons - from

surveying space exploration sites to collecting data on planetary elemental composition. The

client, the United States Geological Survey (USGS) Planetary Geologic Mapping (PGM)

Program, assists the community by developing tools and resources to better access and use

planetary data for these purposes.

Unfortunately, the community faces challenges in collecting map products across multiple

platforms. There are two venues for map publication: through USGS or in various online journal

articles and conference papers. Because USGS mandates certain map standards, many

non-USGS products are instead distributed in these online publications. Currently, scientists and

researchers have to seek out these independent articles to locate map products. This is often

time-consuming to view hundreds of science journals across the internet. Nevertheless, USGS is

responsible for providing the community with data on all planetary maps regardless of how they

are published. Thus, the project team’s goal is to collect and display source data on these

publications so researchers can quickly and accurately locate non-USGS maps.

The project team has developed MapONE, a web application that displays metadata (source

name, link, map body, etc.) on these publications. To populate the application, the project team

must first locate articles containing map products. The team uses a web scraper that searches

through common science journals and pulls publication metadata when a map product is

identified. This data is then passed to the application which can be viewed by users. Instead of

wasting time locating map products, researchers can now view, save, and request maps using

MapONE.

2. Process Overview
To begin the project, the team defined certain rules and expectations. The team agreed to

communicate over Discord and emails. All code material was stored on a GitHub repository. All

team documents were stored on Google Drive. Team meetings were also held weekly on

3



Discord. Mentor meetings were held weekly in person. Lastly, client meetings were held weekly

on Zoom. Additionally, the following roles and responsibilities were assigned to each team

member:

Description Assigned Role

Team Leader: Coordinates task assignments,
ensures project progression, and leads team
meetings. Responsible for all deliverable
submissions.

Samantha Milligan

Customer Coordinator: Communicates and
presents project updates to clients. Monitors
customer satisfaction. Promotes customer
collaboration.

Samantha Milligan
Ricardo McCrary

Recorder: Ensures product features are
documented. Collects notes on all team,
mentor, and client meetings. Responsible for
creating task reports.

Michael Nelson

Architect: This team member is primarily
responsible for ensuring that core
architectural decisions are followed during
implementation.

Jake Stuck

Release Manager: Coordinates project
versioning and branching, reviews and cleans
up commit logs for accuracy and readability.
Responsible for merging product changes.
Ensures that any build tools can quickly
generate a working release.

Michael Nelson

Coder: Produces code and implements
product software features.

Samantha Milligan
Michael Nelson
Ricardo McCrary
Jake Stuck

4



The team also agreed to conduct themselves in a professional manner at all stages of the

product’s development. This included responding to team messages within a 48-hour period and

submitting individual deliverables sections 48 hours before the deadline.

3. Requirements
To begin development and software design, the team outlined MapONE’s key system

requirements. During client meetings, the team created the following list of domain

requirements:

1. Login into an account on the USGS website.

2. View and filter planetary map publication metadata (source name, source link, map body,

map scale, article title, author, and publication date).

3. Download all publication entries.

4. View and save search history results.

5. Automate searches periodically.

6. Receive notifications on new publications from automated search results.

At the time of product delivery, all requirements (except for requirement 3, see section 7 for

more information) were implemented as features of MapONE. Additionally, the following

functional requirements were included in the final delivery:

1. User Account System: A system that allows users to log into the application and access

user privileges (creating automated searches and receiving email notifications).

2. Search Engine: A system that can search and filter publications based on map body or

publication year.

3. Web Scraper: Configure the data extraction tool to locate and collect verified planetary

map publications.

4. Notification System: A system that can send email notifications to users.

For performance requirements, the team had to ensure MapONE’s interface was accessible to

all users and that the web scraper was able to pull new publications on a weekly basis. Lastly, the

5



only key environmental constraint the team faced was that MapONE would be a web-based,

open-source Python tool as requested by the client.

4. Architecture & Implementation
MapONE consists of three modules: a Graphical User Interface (GUI), backend Application

Programming Interfaces (APIs), and a web scraper. These modules are divided into two domains,

the application’s frontend (GUI) and backend (APIs and web scraper). The domains run on two

separate remote servers where the frontend completes user requests through API calls to the

backend.

Figure 1. MapONE’s software architecture.

The web scraper is configured to locate a series of online science journals and search a specific

map body or keyword among published articles. Once the articles are gathered, the web scraper

verifies if each publication contains a planetary map. If so, the source data is extracted and stored

in MapONE’s database.

6



Figure 2. Web scraper workflow.

For technologies, the project team used Flutter, a frontend web-based software, to create the

GUI. Django, a Python full-stack web development software, was used as the web framework

which automatically sets SQLite as its default database structure. Lastly, Keras, a Python

Machine Learning (ML) library, was used to create the web scraper. At the time of product

delivery, the backend system was containerized using Docker, and both the frontend and backend

servers currently run on Heroku, a hosting platform.

5. Testing
The project conducted three phases of software testing on MapONE. First, each module (GUI,

backend APIs, and web scraper) had to pass unit tests to determine if each component could run

independently from the rest of the system. The GUI used a mock testing suite to mimic the

behavior of the backend to test UI elements without an actual API. The backend APIs’ individual

class functions also had to be tested separately. Three Django test cases were created to test user,

entry, and archive functionalities. Lastly, the web scraper used AREPL, a software extension, to

run tests on the web scraper’s process, scan, and extract functionalities.

Next, the modules were tested together during integration testing. The GUI was checked to

ensure successful API requests to the backend would display properly on the interface. Similarly,

all backend APIs were tested under a Django test case which made real-time API requests. The

7



test case ensured all HyperText Transfer Protocol (HTTP) response codes and messages from the

APIs were as expected. Lastly, the web scraper was tested to ensure scraped publications were

displayed in the database and interface in real-time.

Lastly, MapONE’s full system was tested by users during the usability testing phase. A user

survey was conducted and distributed to members of the planetary science community. The

survey allows users to offer feedback on the system’s overall performance. Collectively, the users

confirmed that the system displayed correct planetary map publications. However, the users

recommended that the interface format be changed to a larger viewport (see section 7 for

additional information).

6. Project Timeline
During the course of MapONE’s development, the project team defined specific intervals for

each module creation. During the first half, the project team created the following:

1. Interface’s user profile and main pages

2. Backend’s user, entry, and archive APIs

3. Web scraper’s machine learning model to collect publication data

The second half of the development period included the frontend and backend deployment to

Heroku as well as software testing and overall system refinement. MapONE was delivered to the

clients the week of May 2nd (on schedule).

8



Figure 3. MapONE’s project schedule.

7. Future Work
As previously mentioned in section 3, the only requirement not implemented in MapONE’s

system was the ability to download publications. To implement this feature, users should be able

to export publications displayed on the main page to a Comma-Separated Values (CSV) format.

This allows users to easily gather and store a set of publications for later use.

Also, given the results of the user survey (see section 5), MapONE’s main page could be further

improved. The current table format offers a small viewport of the publication data where only a

few columns are in view at a time. This is difficult for users to read all source data without

constantly scrolling back and forth across the main page.

8. Conclusion
This document outlines MapONE’s development stages throughout the course of the project.

Initially, the project team created team standards and outlined key functional and non-functional

requirements of the system. As the product progressed, the team created the software design and

conducted tests on each main module (GUI, backend APIs, and web scraper). From there, the

9



team was able to deliver the product to the clients. For future projects, users should be able to

export publications along with improvements to MapONE’s interface and table layout.

9. Appendix
This section serves as an appendix to the final report to discuss the development environment

and toolchain used during MapONE’s development.

9.1 Hardware
The majority of MapONE’s development was done in macOS and Windows. The processing

power of each system varied, but the average hardware of each system consisted of ~8 GB of

memory and a 6-Core Intel processor. Although not required, it is recommended that a system

meets this average for effective development.

9.2 Toolchain
The primary list of software tools consists of Python, Django, Flutter, Heroku, and Docker. A

brief description of each tool and purpose in the system are listed below:

● Python: A general-purpose programming language used to develop the web scraper and

backend API components.

● Django: A Python-based architecture used to manage the backend framework as well as

the database that holds all of the web scraper data.

● Flutter: An open-source UI software used to create the frontend of MapONE’s system.

● Heroku: A cloud hosting platform as a service, implemented to build and operate the

system entirely on the cloud.

● Docker: A containerization tool utilized for easier deployment of the system.

9.3 Setup
For more detailed information on installation and configuration, please refer to the team’s User

Manual. At the time of product delivery, the frontend server should run at

https://mapone-interface.herokuapp.com/ and the backend server at

10

https://mapone-interface.herokuapp.com/


https://mapone-api.herokuapp.com/. All files and systems discussed in this section can be

accessed at https://github.com/samantha-milligan/MapONE. Basic setup instructions for the

frontend and backend are listed here:

9.4 Frontend Installation:
1. Install Flutter at https://docs.flutter.dev/get-started/install depending on the operating

system. Here, users can download all system requirements to run a Flutter application.

Follow all installation instructions including downloading the latest release of Flutter

SDK and updating the package source path. Additionally, macOS and Linux users can

use Homebrew, a software package management system, to install Flutter at

https://formulae.brew.sh/cask/flutter.

2. Download the frontend directory from GitHub, “mapone_frontend,” onto the client’s

local machine.

3. Change into the frontend directory, “mapone_frontend,” using a command-line tool.

Figure 1. Frontend directory view.

4. Run Flutter run to run MapONE’s interface on localhost. MapONE’s interface should

now be displayed on localhost on a pop-up browser (this will be automatically opened by

the command).

11

https://mapone-api.herokuapp.com/
https://github.com/samantha-milligan/MapONE
https://docs.flutter.dev/get-started/install
https://formulae.brew.sh/cask/flutter


5. Make changes to the source material as needed and repeat step 4 to see results.

6. Install Heroku at https://devcenter.heroku.com/articles/heroku-cli#install-the-heroku-cli

depending on the operating system.

7. Log in to the existing Heroku account by running heroku login using a command-line

tool.

8. Run heroku git:clone -a mapone-interface to clone the frontend server’s source code to

the local machine.

9. Change into the “mapone-interface” directory where it was cloned in step 8.

10. Replace the files in “mapone-interface” with the new changes in “mapone_frontend.”

11. Run git add . and git commit -m “write-message” to update changes.

12. Run git push heroku master to push changes to https://mapone-interface.herokuapp.com/.

The frontend should now be updated and deployed remotely.

9.5 Backend Installation:
1. Install Docker at https://docs.docker.com/get-docker/ depending on the operating system.

Here, users can download all system requirements to run a Docker container.

2. Install Heroku (see step 6 in section 2.4).

3. Download the backend compressed file from GitHub, “mapone_backend_docker.zip,”

onto the client’s local machine.

4. Unzip the file.

5. Change into the backend directory, “mapone_backend_docker/mapone-api/” using a

command-line tool.

12

https://devcenter.heroku.com/articles/heroku-cli#install-the-heroku-cli
https://mapone-interface.herokuapp.com/
https://docs.docker.com/get-docker/


Figure 2. Backend directory view.

6. Add the password for EMAIL_HOST_PASSWORD in “mapone_backend_docker/

mapone/settings.py”. This will allow users to receive emails from gs-g-wr_astro_

map_search@usgs.gov.

7. Make changes to the source material as needed.

8. Run pip install -r requirements.txt to install all necessary packages. For this step, it is

recommended the client use a virtual environment. For more information, visit

https://virtualenv.pypa.io/en/stable/.

9. Run python3 manage.py runserver to run the backend server locally at

http://localhost:8000/.

10. Log in to the existing DockerHub account by running docker login using a command-line

tool.

11. Run docker container stop $(docker container ls -aq) to stop all Docker containers as

this is an existing container.

12. Run docker container rm $(docker container ls -aq) to delete all containers.

13. Run docker rmi $(docker images -q) to remove all Docker images.

13

mailto:gs-g-wr_astro_map_search@usgs.gov
mailto:gs-g-wr_astro_map_search@usgs.gov
https://virtualenv.pypa.io/en/stable/
http://localhost:8000/


14. Run docker images -a and docker ps -a to ensure container and image lists are empty.

15. Run docker build -t mapone-api . to create a new Docker image.

16. Log in to the existing Heroku account by running heroku login using a command-line

tool.

17. Run heroku container:login to log in to the container.

18. Run heroku container:push web to update changes.

19. Run heroku container:release web to push changes to https://mapone-api.

herokuapp.com/. The backend should now be updated and deployed remotely.

20. Enter https://mapone-api.herokuapp.com/timer/ into any browser to start the system’s

internal timer (see section 3.2 for more information).

9.6 Production Cycle
An IDE of choice is recommended for editing any of the material in this system. For reference,

the project team used Visual Studio Code for Python-related material and Android Studio for the

Flutter GUI. Following the steps above, users can disregard the installation process (assuming

completion) and make changes to the source material as needed. Once changes have been made

and deployed, please ensure all new material is pushed to the GitHub repository.

14

https://mapone-api.herokuapp.com/
https://mapone-api.herokuapp.com/
https://mapone-api.herokuapp.com/timer/

