EvaluRate

The Hack Jacks

Dylan Grayson
Conner Swann
Brandon Paree
Brian Saganey

Final Report

May 12, 2016
V1.0

Table of Contents

Table of Contents

Introduction

Process Overview

Roles for Each Member

Requirements

Functional Requirements

Non-functional Requirements

Architecture

Testing

Unit Testing
Usability Testing

Results of Testing
Future Work

Introduction

In today’s workplace, it's almost impossible to avoid working with a team of
people on a project, but there is no standard way for the managers of those teams to
evaluate the performance of each individual. Anonymous peer evaluations, forms that
every member of a team receives for the purpose of rating their teammates according to
some scoring metric, could solve that problem. However, there is no easy way to create
and distribute these peer evaluations. EvaluRate aims to provide a robust software
platform for distributing anonymous peer evaluations and viewing the resulting data.
EvaluRate also allows for the modelling of real world division hierarchies, so virtually
any manager at any level in any organization could issue anonymous peer evaluations
to a team of subordinates.

EvaluRate will mainly be used for corporate and academic environments.

e Corporate environments will use the anonymous peer evaluations to inform
staffing and human resource decisions, as well as better inform future team
roster decisions.

e Academic environments will use the anonymous peer evaluations to score each
individual who contributed to a group project, thus ultimately determining their
grade for the project.

Since EvaluRate is a fairly complex application for administrative roles, the risk was of
the user interface being too complicated for administrative users. The design process
proved difficult, yet helped refine the user interface to the point where it can be used
and understood easily. This was partly because the application was built with Meteor
Javascript framework, which provides easy tools to build a reactive web application with
interactive client-side web pages. The end result is a web application that is both robust

and elegant.

Process Overview

The process of developing EvaluRate was an agile methodology similar to
Kanban. It relied heavily on the use of Github, and the issues system therein. Basically,
every task that needed to get completed was created as an issue on Github and briefly
described. As developers, we would assign ourselves an issue, complete the issue,
then create a pull request for that issue. The pull request is then assessed by one or
more teammates and, if everything works, merged into master. The corresponding issue
is then closed.

For the purpose of assigning roles to each developer, we must first clarify that
the Meteor paradigm includes a robust client application, therefore much of the
business logic is contained in the client application. Since it is more common in web
development for the majority of business logic to exist on the back-end/server, we use
the terms like this:

e back-end - The business logic of the application whether it exists on the client or
the server.
e front-end - The actual user interface on the client, and other visual components

of the application.

Roles for Each Member

Dylan Grayson - Team leader, back-end developer.

Brandon Paree - Back-end and front-end developer.

Conner Swann - Back-end developer.

Brian Saganey - Front-end developer.

Requirements

This section contains a brief overview of the most important aspects of the

requirements for EvaluRate.

Functional Requirements

1. Unit Management
1.1. User can create new units
1.2. User can administer and set permissions for units
1.3. User can view units they belong to
2. Project Creation
2.1. User can create a project with the following criteria
21.1. Name
2.1.2. Startdate
21.3. Enddate
21.4. Team list
2.1.4.1. Complete with team roster
3. Evaluation Engine
3.1. Issue evaluations to a project
3.1.1. Sent to each member of each team in the project
3.1.2. Each member sees an evaluation pertaining to their team
3.2. Submit Evaluation
3.2.1. User can fill out peer evaluation

3.2.2. User can submit peer evaluation

Non-functional Requirements

1. Works with any organizational structure
1.1. Can define any organization to map to a real world organization with
people and units.

2. Real time updates

2.1. All changes to the database are reflected on client application immediately

Architecture

The high level architecture (shown in Figure 1) is quite simple. The basic
organizational structure is the unit which can contain people, projects, or more units.
Projects contain teams (which are technically just temporary units) and evaluations.
Evaluations are attached to projects and are sent to every member of every team. The
majority of this logic is implemented in a JavaScript client-side application, which
consumes only certain data from a minimal server-side JavaScript application in a Node
runtime.

Initially, projects were not part of the system, as we planned to allow the arbitrary
creation of units as teams, and the ability to attach an evaluation to the unit containing
the teams. We eventually decided to use projects to act as a container for teams and

evaluations, because it is a stronger metaphor to reality.

Permanent
Unit

[Projects Evaluations H

Figure 1 - Architectural diagram

Testing

EvaluRate is a fairly complex web application that aggregates data from multiple
different users, and has a strict permissions hierarchy. It also relies on the usability of a
front end application that faces two distinct user groups. For these reasons, our primary
focus for testing EvaluRate will be on:

e Unit testing - Testing for code correctness

e Usability testing - Testing for usability from target users

Unit Testing

Since EvaluRate is built with Meteor.JS, all unit testing is performed by the node-based
unit testing framework Mocha. Using the framework, we will be testing EvaluRate in two
major ways. At the method-level, we will be performing simple unit testing. However,
due to the closely integrated nature of the client and server, simple unit testing does not
adequately capture the range of possible component interactions. In other words,
testing only on the server or only the client is insufficient, so Meteor provides a testing
environment that lets us load both client and server code to their respective areas while
also isolating those components from the rest of the application. The two main
components of the application that were tested are as follows:

e Result Scores - The weighted average of evaluation data for each member on a

team.
e Permissions - The restriction and denial of different administrative actions on any

given unit.

Usability Testing

In order to decide how the usability for EvaluRate should be tested, we first had
to consider who would be using the application. There are two obvious divisions in the

functions of the user interface. The first function facilitates administrators/managers of

projects/teams to issue evaluations to the members in those teams, and receive the
data for viewing. The second function allows the members of those teams to fill out and
submit the evaluations. The usability testing for EvaluRate included user feedback, and
informal walkthroughs from two user groups we have easy access to:
e Professors: They fit right in our user group for project/team administrators, as
they often assign group projects, and may desire peer evaluations.
e Students: They are the user group that will be put into teams on projects,
therefore taking evaluations.
These professors provided significant feedback that exposed some weak points in the

user interface where the appropriate steps were not clear.

Results of Testing

Due to time constraints, the testing occurred much later than expected, and
therefore we only had time to change a few minor things:
e Helpful tooltips on buttons with only icons

e Confirm password on sign up

Future Work

Dr. Doerry is actively looking for a Computer Science student at Northern Arizona
University to continue development and maintain EvaluRate. The project can be

improved by adding more evaluation criteria and refining the user interface.

It is our hope EvaluRate will become a valuable tool for the Computer Science
department for peer evaluations, and EvaluRate will be worked on by future students in

the Computer Science department.

