Final Report

The Disease Outbreaks Team

Abdulaziz Alhawas
Jean-Paul Labadie
Jordan Marshall

Luis Valenzuela

Introduction
Process Overview
Interface Prototyping
Interface Implementation
XML Output Implementation
Job Manager Communication
Job Progression
Requirements
Functional
Non-Functional Requirements
Architecture

Testing

Unit Testin
Job Saving/Loading Module

Methods and Unit Tests

User Settings

Methods and Unit Tests

Network Module

Methods and Unit Tests
Integration Testing
Usability Testing

Introduction

The sponsor for this project is Darrin Lemmer at TGen North. The
strategic plan for TGen North is focused on diagnostic, analytic, forensic and
epidemiologic research related to pathogens important to medicine, public
health and biodefense. The research capabilities at TGen include a variety of
DNA sequencing and PCR-based analyses, forensic analysis of outbreak and
bio threat incidents, as well as advanced bioinformatics and computing
infrastructure.

The Northern Arizona SNP Pipeline is the primary tool used by the
disease outbreak division at TGen, the sponsor, to investigate fungal and
bacterial genomes for the purpose of tracking disease outbreaks. The
pipeline is optimized to run on a computing cluster, which can be remotely
accessed. Currently, users interact with a command-line program, which
emulates a ‘wizard’ style interface, asking the user for the locations of
various files, parameters that need to be included with the data, as well as
other options to include while running the process. This command-line
program then generates a formatted XML document, after which is passed
on to the computing cluster. The NASP tool uses the information in the XML
to run the process.

This command-line tool, while effective, can be daunting and
unforgiving for a non-programmer to use. Right now there is no way to clear
an entry, adjust an entered parameter, or fix a mistake without resetting the
whole command-line tool. The command-line tool does not allow the input of
custom options, unless the XML document is directly manipulated, this is not
feasible for users unfamiliar with XML and its structure. The users seek a
way to pass in their data to the computer cluster, run NASP, and receive
their output without having to go through the command-line or directly into
the XML document. The primary objective of this project is to create a more
user friendly graphical interface in which users of the current command-line
tool will have more flexibility and increased ease of use.

The main focus for the GUI is to replace the command-line tool
entirely, providing a robust and modular interface which improves the user
experience. This goal is well within our abilities, as the command line tool is
sufficiently abstracted from the NASP job process. Because the NASP
pipeline is dependent solely on the XML, the GUI will be completely
independent of the other technologies used in NASP. The core requirement
of the project is then to provide a user interface which can generate this XML
and pass it to NASP pipeline to begin a job. Features of the project will build
upon this, including providing a visual representation of job completion by
interacting with the job manager, and visualizing the phylogenetic trees
which result from the job once it has finished.

Potentially, this GUI could set the standard for genetic SNP’s
phylogeny. Since command-line tools are the current route to manage the
NASP tool currently, a graphical user interface will provide massive amounts
of extra usability to users that are not only uncomfortable with the
command-line, but also unfamiliar with the generated output that will be
passed to the cluster.

Process Overview

Interface Prototyping

The implementation for this project began with meeting with the NASP
team at Tgen and researching what types of tools they were already using
and what design aspects of each of those tools they liked and disliked. At
this point we began creating some prototypes of the interface taking this
feedback into consideration. After the layout of the interface met the
requirements the implementation of it began.

Interface Implementation

The layout of the interface at this point should be nearing completion
there we may still be moving aspects of the interface around. The bulk of the
work at this stage is at the backend. Panes, text fields, buttons, etc. should
be identified properly within the code and the implementation of the logic
needed to fulfill the functionality should be underway. This stage of the
project will overlap with the XML output implementation which will start once
the relevant aspects of the interface have been properly identified and
implemented.

XML Output Implementation

As stated before this functionality should start being implemented once
the proper fields within the interface have been identified. Since this is the
file that NASP takes as input it need to be properly formatted before being
sent off. The implementation of the output requires us to be familiar with the
XML schema that Tgen’s command line tool generates. Once the XML is
generated by our tool we will need to develop a way to test the integrity of
the file.

Job Manager Communication

The next step in the process is to develop a means to send the
generated XML file to the computing cluster where NASP lives. Given that
Tgens current tool already has a means of achieving this it may just be a
case of porting over the code to our tool but we are prepared to create our
own implementation if it results being more difficult than that. To achieve
communication we will have to do some researching both within their tool
and outside networking resources.

Job Progression

Since jobs sent to NASP can take a considerable amount of time to
complete Tgen would like to have a way to check on a job’s status. We will
need to look into whether the computing clusters have a way to easily check
on jobs that are running. Once we have an understanding about how the
clusters handle this we will start implementing a way to poll them for
progress and display that result to the user in the form of something like a
progress bar or a percentage.

Requirements

Functional

The final implementation must be able to fully replace the
command-line tool that is currently used to interact with NASP, while
leveraging the advantages offered by a more advanced interface. To this
end, it must provide an intuitive Graphical User Interface (GUI) which allows
users to build a new job for the NASP tool. This GUI must also allow this job
to be sent to a number of remote computing centers (currently ASPEN and
MONSOON), or run locally.

To begin the process of creating a job in the new tool, users must be
able to specify where output files will be written. Users must be able to
provide either local or remote reference FASTA files. Users must be able to
toggle the option to ignore duplicated regions found in the reference files.
The user must be able to select the job management system that will be
used, as well as the option to run without a job manager. Likewise, the tool
must support interactions with the PBS/Torque, SLURM, and SGE job
management systems. If a job management system is chosen, the system

must allow users to specify a queue or partition to be used for all jobs, or
use the default queue. The system should also allow users to add additional
arguments to the job request.

The user should also be able to supply local or remote FASTA files from
external genomes. If remote external genome FASTA'’s are supplied, the
user should be able to specify advanced settings for the NUCmer tool.

The user should be able to supply local or remote read files if they
wish. The user should be able to select which alignment tools they would like
to use, including BWA, Novoaligh, and SNAP. Alternatively, users should be
able to provide pre-aligned files such as BAM. Depending on the choice of
alignment tools and files specified, users should be able to choose only
related additional options.

If the BWA aligner was selected, users should be able to select options
such as running the BWA samp/se tool, and the BWA mem tool.
Furthermore, they should be allowed to define any advanced settings related
to the BWA tool and optional tools.

Users should also be allowed to run the Bowtie2 tool. Users should
likewise be able to set advanced settings for the Bowtie2 tool.

If users chose to include Novalign as an aligner step, they should be
allowed to enable and define extra Novalign settings. For instance, users
should be able to specify an alternate Novalign version from the default.
Users should be able to supply additional arguments. Users should also be
able to Novalign’s runtime settings, such as defining queue and partition,
maximum memory allotment, maximum CPU allotment, and maximum
runtime allotment.

If users choose to run SNAP, they should be allowed to specify local or
remote prealigned SAM or BAM files to be included. Users must also select
one or more SNP caller functions, GATK, SolSNP, VarScan, and SAMtools.
Users must also be allowed to provide local or remote VCF files if they are
available.

If users elect to include the GATK SNP caller function, they should be
allowed to define advanced options for the tool. If users elect to define
advanced options for GATK, they should be able to: choose an alternate
version of GATK, define the queue or partition for GATK to run on, define the
maximum memory allocation for GATK, define the maximum CPUs allotted
to GATK, define a maximum runtime to GATK, and define additional
arguments for the GATK runtime.

Users should also be allowed to define how NASP will filter results
based on coverage. Users should be able to select a minimum coverage
threshold, including zero (no coverage filtering). In addition, Users should be
able to filter based on the proportion of reads that match the call made by
the SNP caller. Users should be to enable this filtering, define the minimum
acceptable proportion.

Users should be able to define advanced parameters for the
MatrixGenerator processing step. These should include: define an alternative

MatrixGenerator version, pass additional arguments to the MatrixGenerator,
define the queue or partition for the MatrixGenerator to run on, define the
maximum memory to be used in processing, define the maximum CPU count
to be used in processing, and define the maximum run time of the job in
hours.

Finally, the user should be able to decide if the generated matrix
should include all reference positions, or if the generated matrix should
mask low-quality calls. Based on the user’s settings, as defined above, the
tool should then create an XML document which conforms to the schema
defined by TGen North. This XML is the interface used by the NASP tool, and
completely defines the job and tasks desired by the user.

The tool must also be able to connect to the remote computing centers
and start the job, using the XML generated and providing it to the NASP
pipeline through the job managers selected. Currently, the tool must support
interactions with the job managers PBS/Torque, SLURM, and SGE. The tool
must also provide an interface for the user to visually track the progress of
started jobs via said job managers, and to retrieve the files generated by the
job upon completion. Finally, the tool should provide the user with
visualizations of the generated matrix, including diff-like side-by-side views
of SNPs, and a phylogenetic tree. Additional features may expand upon
these visualizations, and could allow users to draw upon and annotate trees,
collect individual sample information, and additional filtering.

The tool should also be ‘modular’ where possible, but especially in
terms of the visualizations, providing users a straight-forward method for
expanding or changing functionality should the need arise after the project is
completed.

Non-Functional Requirements

The GUI shall have a simple design that should not require users to
undergo additional training. The GUI designh needs to look similar to TGen's
existing UI programs, and should follow their design patterns. Results must
be processed and displayed to the GUI to allow users to visualize data in an
organized way.

Additional tools should be easily integrated into the solution. The GUI
needs to be implemented in a manner which produces reliable and correct
XML documents. The GUI shall also provide a visual representation of NASP
job completion status. Finally, the design shall be documented using TGen’'s
design templates.

Architecture

Views Models/Controllers
d N e N
4 k) il N
NASPDefaultlobPane.fxml VistializationBeoiwser
. S AN I
(k. g ™
‘:.‘> NASPGuiMainLayout.fxml ‘::> DragResizerController l::> n—— Pipe”ne@
User , PR e
i, . ~
ASPJobMeonitorPane.fxml OutputParser
W A
A 5 N
Outputxmi JobTabMainController
\ / e—

The solution has MVC architecture; views that hold most of the GUI
which the user interacts with , models which has most of the system’s logic
that process the arguments passed by the views, controllers that handles
the communication between views and models in the system, and NASP
pipeline which is an external component that the system interacts with.

The system has four major views; NASPDefaullobPane which holds the
arguments that the user inputs to start a job, NASPGUIMainLayout that
implements the toolbar which enables users to start jobs,
NASPJobMonitorPane which allows the user to track jobs progress status,
and Output which will provide the user with data visualisation.

The system also consist of models and controllers which has four
important components; VisualizationBrowser which is the logic behind
Output view, DragResizerController which improves the quality of the GUI,
OutputParser which handles the output that get received from NASP Pipeline
and parse it for visualization purposes, and JobTabMainController which
handles all the user navigation that happens on the job tab. The Solution
also interacts with NASP Pipeline and provides it with xml scheme that allows
it to start the job.

Testing
Unit Testing

The graphical user interface being implemented consists of a variety of
parts that all interact with each other to provide useful functionality within
the interface. Many of the modules that provide that functionality depend on
the correctness of other modules. Because of this it is important to make
sure that they are functioning as expecting and returning values that make
sense and are correct for any given input.

Developing unit tests will ensure that our modules are correct and will
help us identify and correct issues within the program. The following are
important modules, their arguments, and a discussion of the unit tests that
will validate their return values.

Job Saving/Loading Module

This module provides a time saving feature in the form of loading and
saving job settings. It saves settings by taking the contents of the interface
and putting them into a Java object named NaspInputData. The contents of
this object are then saved into an XML file that is formatted in such a way
that it can be sent and run on NASP without having to be processed further.
The loading works in the opposite direction. First an instance of the
NasplnputData object is created, the contents of the XML file are then saved
into this object, and finally the interface is populated.

Methods

Methods and Unit Tests

jaxbXMLToObject
This method takes an XML file as argument and returns an
instance of NaspInputData that contains all of the settings within
the XML file.

jaxbXMLToObjectTest
This unit test passes an XML file to the jaxbXMLToObject method
and stores the reference to the NaspInputData class that it
returns. The values within this class are then compared to the

corresponding values within the XML file. This test passes if the
values match and fails otherwise.

User Settings

The user settings module handles the saving and modifying of settings
such as username, URL, port, and job manager. These settings are stored on
initial login and later used to connect to a given cluster therefore it is
important to make sure that the information is being stored and returns all
of the fields correctly

Methods and Unit Tests

getCurrentRemoteSettings
This methods loads the current remote settings from the configs
directly into a JSON object. It then accesses a key within this
object corresponding to the remote settings and returns its
contents in the form of a JSON object if the key exists otherwise
it returns null.

getCurrentRemoteSettingsTest
The test for this will call getCurrentRemoteSettings, save the
JSON object returned, and validate that the contents of the
object to ensure that the returned objects contains the remote
settings.

setCurrentRemote
This method simply sets a new setting with the key “Current
Remote”. Initially the contents of this key are empty.
setCurrentRemoteTest
The test for this method simply calls the setCurrentRemote then
calls getCurrentRemoteSettings and ensure that there actually is
a “Current Remote” key in the JSON file.

addRemoteSettings
This method actually sets the contents of a setting key within
the JSON configuration file such as the Current Remote key.
addRemoteSettingsTest
Again this test will call the method to add the remote settings to
a key and then verify that the contents of that key are correctly
set.

removeRemoteSettings

This method takes the name of a setting as an argument. It then
uses this name to search the JSON configuration object and
remove the corresponding settings.

removeRemoteSettingsTest
This test calls the method on a JSON file and then makes sure
that the setting is removed by trying get the contents of the key
removed. This should return null.

readSettings
This method takes the path to a file as an argument and returns
a JSON file with the contents of that file.

readSettingsTest
This test calls readSettings and compares the contents of the
returned JSON object with another JSON object that should
match.

writeSettings
This method takes a path and a JSON object as arguments. It
then writes the content of that JSON object into the path
specified.

writeSettingsTest
The test for this calls writeSettings and then calls readSettings
and verifies that the contents of the JSON file are correct.

getCurrentServerURL
This method loads the current remote settings into a JSON
object and returns the contents of the URL key.
getCurrentServerURLTest
This test will call the method and verify that the URL returned
matches the expected URL.

Network Module

The network module handles all of the communication with the

clusters. This modules role within the overall program is important as its the
bridge between the interface and the NASP tool. It needs to be able to form
a connection, send commands, and transfer files from the cluster to the local
machine and vice versa. The following tests will ensure that the methods
that this module is comprised of function correctly.

Methods and Unit Tests

intiSession
This method takes username, password, url, and port as
arguments. It then simply creates an instance of the Session
class.

initSessionTest
The test for this calls initSession on an instance of the
NetworkManager class, calls the initSession method of the class,
then calls the getSession method, and checks if the returned
value is null or not. If it is null the test fails.

openSession
This method uses the session instance that initSession creates to
form a connection using the arguments passed to in.
openSessionTest
This test passes if the call to openSession does not result in an
exception. Open session will attempt to create a connection will
throw an exception is it fails.

closeSession
This method closes all channels that are currently open and
terminates the connection.

closeSessionTest
This test calls closeSession on an open session then calls
isConnected on the session. If this returns null the test passes.

upload
The upload method takes a file and an absolute path as
arguments. It then uses the connection to the cluster to transfer
the file to the cluster into the specified path.

uploadTest
This test calls upload and then checks for the file in the directory
on the cluster. It passes if the file exists.

download
This method takes the an absolute local path and an absolute
remote path as arguments. It then copies the file from the
absolute remote path to the absolute local path.
downloadTest

The test calls download and checks whether the specified
filename exists in the local directory.

runNaspJob
This method takes a path to an XML file as argument. It then
uses the connection to the cluster to send commands and start a
NASP job with the XML file. It then returns the ID of the job.
runNaspJlobTest
The test calls runNasplob and passes if runNaspJob does not
throw an exception and returns an job ID.

Integration Testing

Integration testing ensures that the separate components of the GUI
communicate with each other properly. Once we have checked the
functionality of each separate class during unit testing we combine them
together and run them as a group, luckily our project involves building a GUI
so this already puts everything together for us. Integration testing is used to
secure the integration between the view of the GUI, the inputs, and the
intended output.

We chose to start with a more top-down approach, in that we started
at the very top of the hierarchy and worked our way down to individual
branches from there. Specifically we used a breadth-first process, in this
case we started with the overall integration of the classes, fxml, and GUI as
a whole. Once we were unable to visually see any obvious problems of
integration between components we started to dig deeper into our interface
and start coupling out components that made logical sense to be tested and
working with each other.

Conveniently for the team, we are able to do some level of integration
testing every single time we run the GUI from our local machines. Each time
the run button is clicked the classes such as the MainController, the
VisualizationController, the OutputParser, and so on are packaged all
together with the fxml which dictates the look and layout of the GUI. In this
way integration testing has been fundamental in our iteration process by
testing and refactoring the way things are laid out within the user interface
itself. In this way the whole team has been able to contribute to the
integration testing portion of our project.

Some of the key things that were looked out for throughout the
integration of the project were specifically how each piece of the GUI
responds with one another. For instance, does the main layout fxml page
display the components of the main window in a rationally sound way. We

also need to know if a drop down list that is implemented throughout the
fxml is grabbing the proper values, if any, from the main controller java
class. Because we are fortunate to have explicit visual cues in our GUI we
are able to visualize a problem between the integration of two or more
components and go back and edit the source code accordingly.

The final steps of integration testing are currently underway and
requires careful scrutinization in the way the user interface works with
Tgen’s network. Because our GUI is currently sound in terms of stand alone
integration, the real tests start to show in the form of the ability to local and
network drives at Tgen, the ability to remotely access their clusters to create
and send jobs, as well as grabbing and visualizing feedback, among other
unforeseen problems. This process will not be extremely different than how
the GUI was integrated amongst itself on a local environment.

Usability Testing

Usability testing is essential for the success of GUI based systems. In
order for a user interface application to be successful, end users should be
considered throughout the designing process. For or system, we focussed on
the end-users experiences and on what they were comfortable with when we
were designing our beta prototype.

We had a meeting with our sponsor and a number of his colleagues
that were intended to use our interface where we interviewed them. We sat
down with them and took a look on what tools they were using currently. We
discussed with them what parts of the interface they liked and which they
didn’t like and why. We took notes with the intention of designing our
prototype to have similar look and feel with the tools they already
comfortable with. This process will help us design an intuitive interface that
our audience would be very familiar with and hopefully would have a slight
learning curve.

(QJFle] Actions Settings Tooks Window Help

After carefully reviewing the tools that Gm:m:m i ’5-?43;5&55
the Tgen employers are comfortable with, we |8 | ‘
began establishing patterns between them
and began understanding why these
interfaces work very well with our users.
Figure 1 shows an example of one of the tools
that tgen employers use. This tools gave us
an idea of the basic structure they were
comfortable with. We discovered that
accessibility is key and our end-users like
interfaces that has a lot of functionalities in
one place. Their type of work requires them

Figure 1. Ugene, a common informatics GUI

to use those tools frequently and for multiple tasks. Having multiple
functionalities in one place enables them to save time and ease their work
flow.

After we finished designing our beta prototype, we scheduled a
meeting with our sponsor and a number of end-users. We presented our
prototype to them and took notes of their initial impressions. We began
modifying the design based on their feedback until they were satisfied.
Including end-users into the design decisions made them familiar with the
GUI and that would reflect very positively in the usability testing.

There are many techniques to test a usability of an interface. We are
aware that the way we presented the prototype to the end-users may
create biased opinions. Bias feedback is expected because the designers
were in the same room with the end-users which may caused them to not
say what they really think of the GUI and not give any negative feedback.

In order to solve this issue, we are thinking of having a two room
testing environment where we design a lab manual and place the end-users
in one room with the lab manual and record their interaction with the
interface using video cameras. The designers will be in a separate room
monitoring the testing process and taking notes without any interactions
with the end-users. We believe that this process will reduce bias feedback
significantly.

We will review the footage to try and discover where the users had
problems with the interface and which aspects of the GUI they were having
trouble with. This usability test will help us significantly to design an intuitive
interface that Tgen and our sponsor would be very happy to use.

