Desigh Document

The Disease Outbreaks Team

Abdulaziz Alhawas
Jean-Paul Labadie
Jordan Marshall

Luis Valenzuela

Introduction

Architectural Overview

Module and Interface Descriptions

Implementation Plan

Introduction

The team that we are working with at Tgen has tasks that require a substantial
amount of computing power to complete. Due to that, the tasks are run on a remote
computing cluster. Tgen has developed a tool named NASP that lives on those clusters
and performs the needed calculation on files that Tgen produces. In order to run, NASP
needs certain parameters which the biologists provide.

Our ultimate goal for this project is to create an interface for Tgen that takes user
input, generates a correctly formatted XML, and sends that XML file to a computing
cluster. Tgen would also like to have some sort of visualization of the data returned by
the cluster. Currently, Tgen has a solution that is not ideal for the biologists interacting
with the tool. Since the interaction with the tool is done entirely through the command
line and not many people at Tgen are familiar with it, they have requested a tool with
more user friendly interface.

The maijority of this project will be completed using Java, JavaFX, and D3.js.
JavaFX is being used to created the interface and we are using Java to implement the
logic and communication with the computing clusters. We plan on using D3.js to
implement to generate visualizations of the data in the form of a tree.

Providing this tool to Tgen would save them time and frustration of having to deal
with a command line tool. Having an interface to interact will make the tool easier to use

for users regardless of their familiarity with the command line.

Architectural Overview

Views Models/Controllers
7 b r Es
i k. i ™
NASPDefault/obPane.fxml VisualizationBrowser
. B4 AN S
4 kS 4 N
NASPGuiMainLayout.fxmil : DragResizerController ‘:l> NASP Pipeline
User S X i
/7 N
ASPJobMaonitorPane.fxml OutputParser
AN S
7 B
WUt JobTabMainController
. o
AN / i &,

The solution has MVC architecture; views that hold most of the GUI which the
user interacts with , models which has most of the system’s logic that process the
arguments passed by the views, controllers that handles the communication between
views and models in the system, and NASP pipeline which is an external component
that the system interacts with.

The system has four major views; NASPDefaulJobPane which holds the
arguments that the user inputs to start a job, NASPGUIMainLayout that implements the

toolbar which enables users to start jobs, NASPJobMonitorPane which allows the user

to track jobs progress status, and Output which will provide the user with data
visualisation.

The system also consist of models and controllers which has four important
components; VisualizationBrowser which is the logic behind Output view,
DragResizerController which improves the quality of the GUI, OutputParser which
handles the output that get received from NASP Pipeline and parse it for visualization
purposes, and JobTabMainController which handles all the user navigation that
happens on the job tab. The Solution also interacts with NASP Pipeline and provides it

with xml scheme that allows it to start the job.

Module and Interface Descriptions

VisualizationBrowser

VisualizationBrowser()
computePrefHeight(double)
computePrefWidth(double)
createSpacer()
layoutChildren()

VisualizationBrowser

VisualizationBrowser class is an important class for creating the visuals that the user
wants after receiving their output data in the GUI. This is important to tGen so that they
can create tables and phylogenetic trees after running a job to more easily compare
their results and data
e VisualizationBrowser() : method will start by loading a web page, adding the
page to the scene, and also applying the styles to the scene.
e computePrefHeight() : and computePrefWidth() will create the proper size
height and width respectively, to allow the browser to be viewed properly inside
the scene of the GUI. This will be done by taking a percentage of the parent

window and returning a proper window ratio for the monitor.

e createSpacer() : is a required method by Java to control the size of the Browser
that has currently been created and showing, this is essentially where every
instance of the Browser lives.

e layoutChildren() : method is needed to get the height and width of the browser
and to set the proper dimensions of the child elements that are built inside of the

browser component.

DragResizerController

DragResizerController{Region)
isinDraggableZone(MouseEvent)
makeResizable(Region)
mouseDragged(MouseEvent)
mouseOver{MouseEvent)
mousePressed(MouseEvent)
mouseReleased{MousekEvent)

DragResizerController
DragResizerController is what we will use to add mouse listeners to a region and make
it resizable by the user by clicking and dragging the border in the same way as a
window.

e DragResizerController() : Constructor that creates and instantiates the region

that we will be clicked and dragged for resizing.

e isInDraggableZone() : is called on a mouse event, and then checks to see if that
mouse click is inside a valid zone. It essentially checks to see if the thing that is
trying to be dragged is in fact draggable.

e makeResizable() : is invoked after we validate that a zone is draggable and then
creates an instance listening to the mouse drags to make the new size of the
region.

e mouseDragged() : listens for a mouse event and returns a x_axis variable to
which the new window size will be adjusted to.

e mouseOver() : checks to see if we are dragging in a draggable zone and then
sets the cursor to the new resize value.

e mosuePressed() : is responsible for ignoring clicks outside of a draggable event.

e mouseReleased() : resets the cursor to the default state when released.

MainController

initCreateNewJobHandler()
initMainFileBrowserTree()
initialize(URL, ResourceBundle)

MainController
The MainController Class monitors and responds to changes at the highest level of the

GUI. It manages the three main Panes of the GUI and the main menu bar.

e initCreateNewJobHandler() : On startup, creates a Handler which monitors the
“Create New Job” button in the main menu. When the “Create New Job” button in
the main menu is pressed, this Handler will add a new Tab to the JobTabPane
with its own Handler.

e initMainFileBrowserTree() : On startup, creates a Tree which visualizes the
user’s file system, and displays this tree in the file browser pane. This Tree
allows users to drag and drop their selected files or directories into containers in
a JobTabPane.

e initialize(URL, Resource Bundle) : On startup

QutputParser

OutputParser()
addElement(Attr, Element)
removeElement(Element)
createQutput XML()

OutputParser

The OutputParser class is used just prior to job initialization. Once all required fields in
the current JobTabPane have been populated, the user may click “create new job” or
“save job as template.”

If the user selects “create new job,” the OutputParser is used to add the current state of

the JobTabPane to the XML model. This is a multi-step process. As fields are populated

in the JobTabPane, Elements and Attributes are added to the Document (which is
stored on the Java Stack). When the user clicks “create new job” the Document is
written to disk.

e addElement(Element element, Attr attribute) : creates a new Element Node in
the XML DOM with the supplied inputs. Note that this is represented in memory,
but not yet written to the disk. Elements and Attributes are defined as Classes
based on the NASPInputSchema.xsd

e removeElement(Element element, Attr attribute) : removes a previously
added Element from the XML DOM if it exists. Note that this is represented in
memory, but not yet written to the disk

e createOutputXML(String filename) : writes the current XML DOM to the disk
using the filename given in the default output directory. This finished XML
represents the entirety of the NASP tool job request, and can be sent to a remote

service running NASP to begin a new job

Implementation Plan

Interface Prototyping

The implementation for this project began with meeting with the NASP team at Tgen
and researching what types of tools they were already using and what design aspects of
each of those tools they liked and disliked. At this point we began creating some
prototypes of the interface taking this feedback into consideration. After the layout of the

interface met the requirements the implementation of it began.

- ~—
;.‘ November 2015

project

Name ‘Begin d| End date
° Requirements Analysis 9/29/15 11/6/15 | Me——
5 Visual Interface Prototyping 11/3/15 11/20/15 | |/

o Meet With the NASP Team 11/3/15 11/3/15 |3
o Begin Prototyping 11/4/15 11/20/15 | |

Interface Implementation

The layout of the interface at this point should be nearing completion there we may still
be moving aspects of the interface around. The bulk of the work at this stage is at the
backend. Panes, text fields, buttons, etc. should be identified properly within the code
and the implementation of the logic needed to fulfill the functionality should be
underway. This stage of the project will overlap with the XML output implementation
which will start once the relevant aspects of the interface have been properly identified

and implemented.

project

> S

MName

Begin d...

End date

2015 2016

I
December January February

@ Requirements Analysis

@ Visual Interface Prototyping

E @ Visual Interface Implementati...
@ Interface Design and Impl...
@ Test Implementation

9/29/15
11/3/15

11/6/15
11/20/15

11/18/15 2/22/16
11/18/15 2/9/16
12/25/15 2/22/16

XML Output Implementation

y

4

As stated before this functionality should start being implemented once the proper fields

within the interface have been identified. Since this is the file that NASP takes as input it

need to be properly formatted before being sent off. The implementation of the output

requires us to be familiar with the XML schema that Tgen’s command line tool

generates. Once the XML is generated by

the integrity of the file.

_ S
, @i

project

Mame Begin d..| End date

9/29/15 11/6/15
11/3/15 11/20/15
11/18/15 2/22/16
2116 3/4/16
21/16 2/19/16
2/15/16 3/4/16

3]

Reguirements Analysis

Visual Interface Prototyping
Visual Interface Implementati...
XML Output Implementation

@ Being XML Output Implem...
@ Test XML Output Impleme...

0o & &H

Job Manager Communication

our tool we will need to develop a way to test

I
Week 10
TIFRME

NWeekd
22146

The next step in the process is to develop a means to send the generated XML file to

the computing cluster where NASP lives. Given that Tgens current tool already has a

means of achieving this it may just be a ca

se of porting over the code to our tool but we

are prepared to create our own implementation if it results being more difficult than that.
To achieve communication we will have to do some researching both within their tool

and outside networking resources.

= S 2016
E

project Y

R lWe ek Q I\J’U’e ek 10 I\J’U’e ek 11 I\J’U’e ek 12 I\J’U’e ek 13
Name Begin d..| End date 2021418 2423116 16 3318 2820416
¢ Requirements Analysis 9/29/15 11/6/15 Srzrng
@ Visual Interface Prototyping 11/3/15 11/20/15
@ Visual Interface Implementati.. 11/18/15 2/22/16 —
@ XML Qutput Implementation 2/1/16 3/4/16 \
B @ Job Manager Communication 2/17/16 3/21/16 |4 |

@ Communication Research 2/17/16 3/11/16 E

@ Beqin Job Manager Comm...2/29/16 3/21/16

Job Progression

Since jobs sent to NASP can take a considerable amount of time to complete Tgen
would like to have a way to check on a job’s status. We will need to look into whether
the computing clusters have a way to easily check on jobs that are running. Once we
have an understanding about how the clusters handle this we will start implementing a
way to poll them for progress and display that result to the user in the form of something

like a progress bar or a percentage.

project

> 54 March 2016 April 2016

T T T T T I T I
18 21 22 23 24 25 28 29 30 3 1 4

Name Begind..| End date
Requirements Analysis 9/29/15 11/6/15

=

(£}

Visual Interface Prototyping 11/3/15 11/20/15

Visual Interface Implementati... 11/18/15 2/22/16

(£

XML Output Implementation 2/1/16 3/4/16

=
o 2 o O ®

|

Job Manager Communication 2/17/16 3/21/16 r—

@ Communication Research 2/17/16 3/11/16

© Begin Job Manager Comm..2/29/16 3/21/16 |

@ Job Progress Visualization 3/18/16 4/1/16 1

