
Interactive PointViz Final Document

1

United States Geological Survey

Interactive Point Visualization

Final Report

Prepared by: Erin Bailey, Curtis Bilbrey,

 Alex Farmer, Tim Velgos

Prepared for: Dr. James Dean Palmer

Date Submitted: May 4th, 2015

Project Sponsor: Jay Laura

Faculty Mentor: Dr. James Palmer

Last Updated: May 3rd, 2015

Creation Date: April 22nd , 2015

 Version: 1.0

Interactive PointViz Final Document

2

Table of Contents

1. Introduction. 3

2. Process Overview .3

3. Functional Requirements . 4

4. Non-Functional Requirements .6

5. Architecture . 7

6. Testing 9

7. Future Work .10

8. Appendices .10

Interactive PointViz Final Document

3

1. Introduction

From September 2007 to June 2009, the Japanese lunar orbiter Kaguya went into orbit around the moon

to collect spectrometer data from its surface. This data was then given to the United States Geological

Survey (USGS) for open distribution and scientific use. Until now, USGS has not had an efficient way to

access, analyze, and visualize this data.

The Geographical Point Visualization (PointViz) project is a web application designed to view specific

data retrieved from Kaguya. An example of a problem this system could solve would be using several

different spectrometer attributes to identify iron deposits below the lunar surface. The project is

composed of two key components: a database to store the large quantities of data, and a web

application that allows users to customize the range of data they wish to see. Users will be able to view

the point data in a graphical form, and use visualization techniques, such as a heatmap diagrams, to

format the data and visualize connections and correlations that may not otherwise be apparent.

Throughout the development of the projects, there were several issues that had to be addressed.

Streamlining the data between the database and the web application was a main issue, which we solve

with Django and PyMongo for data transfer. Storing a large quantity of data was also a key concern, and

is one of the key reasons that MongoDB was the decided database for this project.

This report will summarize the development processes, as well as the choices that were made to finalize

the PointViz product.

2. Process Overview

Before starting the development process for our project, we decided to work in an Agile environment

with weekly Scrum meetings with our mentor, Dr. James Palmer. Originally the main focus of our project

was to create a database that would contain usable point data and their corresponding attributes. Later,

it was decided that we would also build a web application that could connect to the database and

retrieve point data to show to users.

The development of the PointViz project began with understanding the data that would be stored in the

database. USGS provided a Python program that translated the data from its original .spc format into a

series of arrays with attribute data, such as wavelength, radiance, and reflectance data. We then wrote

a program to create documents within collections in our MongoDB database to contain the attribute

data and connect it to latitude and longitude paired coordinates.

Interactive PointViz Final Document

4

Once the data was successfully stored in the database, we developed the web application using the

JavaScript library OpenLayers, as well as Django and PyMongo to send data across the web application

and the database.

3. Functional Requirements

 3.1.Adjust Settings

 These requirements show how the user may adjust the web application’s settings.

3.1.1.Zoom-in: The user may zoom in on the current map they are viewing by selecting the

button on the left hand side of the image.

3.1.2.Zoom-out: The user may zoom-out of the current map they are viewing by selecting

the left hand side of the image.

3.1.3.Panning: The user must have the ability to pan through the image while it is zoomed in

on. The user must also be able to hold a click and drag the image in the direction they wish

to pan.

 3.2.Viewing an Image

 These requirements show how the user may interact with the application images.

3.2.1.Select: Certain points on a map of points must be selectable in order to get a more

detailed description of what the user is viewing.

3.2.1.1.Associated Attributes: Selecting a point must create a display of all attributes

associated with that point as well as a line graph depicting the wavelength associated with

that point.

3.2.2.Layer: The user must be able to select a specific layer on a heatmap in order to get a

more detailed description of what the user is seeing.

3.2.2.1.Layer Attributes: Selecting a layer must create a display of all attributes associated

with that layer.

3.2.3.Specific Hexagon Selection: The user must be able to select a specific hexagon in a

bivariate hexbin map to get a more detailed description of what the user is looking at.

Interactive PointViz Final Document

5

3.2.3.1.Attribute Display: Selecting a hexagon must pop out a display of all attributes

associated with that hexagon, as well as a line graph depicting the wavelength associated

with that hexagon.

3.3.Query Data

These requirements show how the user may query data from the database.

3.3.1.Drop Down Menus: The interface must contain two drop-down menus: the Mineral

drop-down menu and the Visualization drop-down menu.

3.3.1.1.Mineral Drop Down Menu: The interface must contain a drop-down menu, where a

user can select a mineral to query for. The user must then add that mineral to a list with an

“add” button. The user can add as many minerals to this list as they wish.

3.3.1.2.Visualization Drop Down Menu: The interface must contain a second drop-down

menu that allows the user to choose what kind of visualization they wish to see, including

heat maps and bivariate hexbin maps.

 3.3.2.Brush Components: The interface must contain three brush components.

3.3.2.1.Wavelength Brush Component: The interface must contain a range slider for the

wavelength, so that the user may define a range of wavelengths that they wish to query.

3.3.2.2.Radiance Brush Component: The interface must contain a range slider for radiance

where the user may define a range of radiance that they wish to query.

3.3.2.3.Reflectivity Brush Component: The interface must contain a range slider for

reflectivity where the user may define a range of reflectivity that they wish to query.

3.3.3.Brush Ranges: The user must be able to define ranges for however many brushes they

wish. For brushes not given ranges by the user, the entire range will be queried.

3.3.4.Brush Warning: If a range is not defined for any of the brushes, warning text will appear

underneath the brushes they have selected. For brushes not given defined ranges by the user,

the entire range will be queried.

Interactive PointViz Final Document

6

4. Non-Functional Requirements

 4.1.Scalability

 The following non-functional requirements address PointViz’s scalability.

4.1.1.MongoDB: This product must be build with MongoDB so that it may be maintained and

expanded once the original developers have finished development.

4.1.2.Python: This product must be built using the Python programming language so that

new developers that resume this project will be able to continue development once the

original developers have left.

4.1.3.Database Schema: The schema of the database must be built such that similar data

from other satellites may be added without requiring the schema to be altered.

4.1.4.Palette Functionality: The product must be built with palette functionality so that a

user may add or remove palettes to adjust the query criteria.

4.1.4.1.Example: An example of this could be the reflectivity palette which would only

display attributes relating to reflectivity.

4.1.5.Palette Implementation: Palettes should be easy to implement and separate from the

rest of the system such that if a new palette needs to be added in the future, the user is not

required to edit core functionality.

 4.2.Usability

 The following non-functional requirements focus on the ease of use for the PointViz project.

 4.2.1.Reduction of Visual Clutter

 These non-functional requirements involve minimizing data on the user’s screen.

4.2.1.1.Filtering: This product must utilize filtering of point data in a way so that a minimal

data set is used to represent all point data for a given image.

 4.2.1.2.Simple: This must be achieved so the product may be as visually simple as possible.

Interactive PointViz Final Document

7

4.2.1.3.Split: The data will be made visually simple by a filtering process where the data is

split into a grid where only subsets of data within each grid component are used to visualize

data.

 4.2.2.User Interface and Human Factors

 The following non-functional requirements focus on user interaction with PointViz.

4.2.2.1.Intended Users: The intended users are researchers and scientists, or others with a

scientific background to understand the processed data.

4.2.2.2.User Training: The interface should be intuitive and easy to understand, and no

additional resources should be needed beside the help document.

4.2.2.3.Browser Support: The PointViz web application will promise support for IE9,

usability with other browsers is not assured.

5. Architecture

The architecture for the PointViz project is split between a Pipe-and-Filter architecture, as well as a

Client-Server architecture, as shown in Fig 5.1 and Fig 5.2. The technology stack includes the browser,

the OpenLayers JavaScript library, the Django framework, the PyMongo python distribution, as well as

MongoDB. This is shown in Fig 5.3.

 Fig 5.1

Interactive PointViz Final Document

8

As seen in Fig 5.1, the PointViz project has a Pipe-and-Filter architecture concerning the data as it is

imported into the database. The large quantities of data are decompressed and decrypted, and then

preprocessed into sortable attribute data which is then imported into the database.

Fig 5.2

Fig 5.3

Interactive PointViz Final Document

9

The web application shows Client-Server architectural properties through multiple web applications

connecting to one server that hosts the database. Each web application, run through a browser,

connects to the database and fulfils the Client-server model.

Fig 5.3 shows the technology stack that composes the PointViz project. The MongoDB database uses

Django and PyMongo to connect to the web application, where the data is then visualized using the

OpenLayers JavaScript library.

The architecture of the PointViz project is almost identical to how it was planned. The only difference

would be that originally a MVC architecture was planned, but the end result leaned more towards a

combination of Pipe-and-Filter and Client-Server.

6. Testing

The testing of the PointViz application consisted of Usability Testing, Integration Testing, and Unit

Testing.

We conducted Usability Testing by giving users of varying technical skills an online survey after using the

PointViz application, with questions asking about the ease of use, and providing room for any additional

comments. Through this testing we discovered that the zoom feature was difficult for users on laptops

without access to mice, and we implemented clickable plus and minus buttons to zoom in that would be

more trackpad friendly.

Our Integration Testing focused on three main components: MongoDB, Django, and OpenLayers. To test

MongoDB, we checked samples of data that were imported into the database against the values before

being entered, to ensure accuracy. We also confirmed that a MongoDB instance was properly created,

and if not, an error would be thrown. We then confirmed that each PyMongo query was constructed

properly based on query inputs.

To test Django, we confirmed that the python portion of the project properly interacted with the

JavaScript/HTML/CSS of the application. These instances were tested separately to evaluate whether

they worked independently, and could coexist as independent entities. OpenLayers was then tested to

confirm the lat/lon points are displayed on the correct lat/lon points on the map, and that the

visualization successfully maps to the points. Finally, the visualization is checked for accessibility and

intractability with the user interface.

We also conducted Unit Testing on the PointViz application, by testing our python scripts, the

OpenLayers library, and our instance of MongoDB. For more specifics, please see the final testing

document.

Interactive PointViz Final Document

10

7. Future Work

USGS has confirmed that they will be using the PointViz application to further research on the data

gathered from KSP. The project may be expanded upon to allow additional telescopes to store data

within the database so that more detailed analysis can be made possible.

It is our hope that the project becomes a valuable tool for USGS, and that the project may be further

refined to best suit USGS for their research.

8. Appendix A: Acronyms, Abbreviations, and Definitions

Term Definition

JSON JavaScript Object Notation

Radiance The flux of radiation emitted per unit solid angle in a

given direction by a unit area of a source.

Reflectivity The property of reflecting light or radiation, especially

reflectance as measured independently of the

thickness of a material..

Phase,

Emission,

Incidence

Angles

Together these angles describe the position of satellite

in relation to the object it’s orbiting.

Spectrum An array of entities, as light waves or particles,ordered

in accordance with the magnitudes of common

physical property, as wavelength or mass.

USGS United States Geological Survey

Wavelength The distance between successive crests of a wave,

especially points in a sound wave or electromagnetic

wave.

Clean data Data that has been post-processed through

mathematical adjustment functions given by USGS

Interactive PointViz Final Document

11

Dirty data Data that has had no adjustment, and has been taken

directly from the KSP

9. Appendix B: Products and Tools

Software/Tool Version Source Description

MongoDB 2.6.5 http://www.

mongodb.o

rg/

A document

oriented

NoSQL

database.

D3 3.4.13 http://d3js.o

rg/

A Javascript

library used for

manipulating

documents

based on data.

Python 2.7.8 https://ww

w.python.or

g/

An object

oriented

programming

language.

JavaScript 1.8.5 N/A

JSON N/A http://www.

json.org/

Javascript

Object

Notation is a

lightweight

data-

interchange

format.

