

Timber-Strong Design Build 2026

Sky High Structures

CENE476 | December 5, 2025 Zac Timmons, Rivka De Conto, Sydney Gibson, Heavenlee Seria

Purpose: Design & Construct a two-story, small scale, light-framed wooden structure

Client: Mark Lamer, P.E.

Location: 2026 ISWSS Competition

University of Utah, Salt Lake City, UT

Background:

- 2026 Timber Strong Design Competition Rules
- Framing plan design
- Structural calculations
- BIM creation
- Construction drawing

Figure 1: Timber-Strong 2022 Winners [2]

- Task 1.1: Research Past Competition
 Teams
- Task 1.2: Research Competition Rules
- Task 1.3: Research Structural Systems
- Task 1.4: Research Material Availability

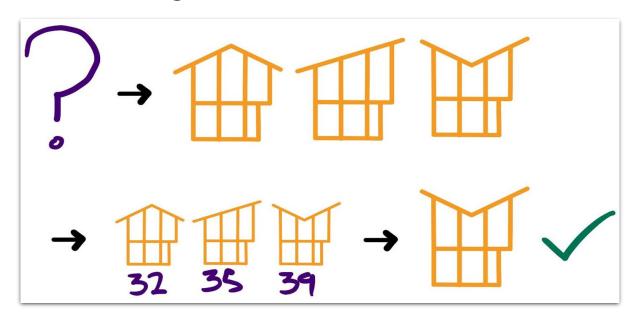


Figure 2: ASCE Timber-Strong Design Build 2026 Rules Cover Page [1]

Task 2: Design Selection

SKY HIGH STRUCTURES

- Task 2.1: Brainstorm Structural Systems
- Task 2.2: Identify Viable Design Options
- Task 2.3: Select Design

4

Task 3: Final Structural Analysis & Design

- Task 3.1: Draft Framing Plan
- Task 3.2: Gravity Design
 - Task 3.2.1 Roof Design
 - Task 3.2.2 2nd Level Bearing Wall Design
 - Task 3.2.3 2nd Level Design
 - Task 3.2.4 1st Level Bearing Wall Design
- Task 3.3: Diaphragm Design
 - Task 3.3.1 Calculate Diaphragm Forces
 - Task 3.3.2 Select Diaphragm Parameters
 - Task 3.3.3 Diaphragm Connection Design
- Task 3.4: Shear Wall Design
 - Task 3.4.1 Calculate Shear Wall Forces
 - Task 3.4.2 Select Shear Wall Parameters
 - Task 3.4.3 Shear Wall Connection Design
- Task 3.5: Uplift Connection Design

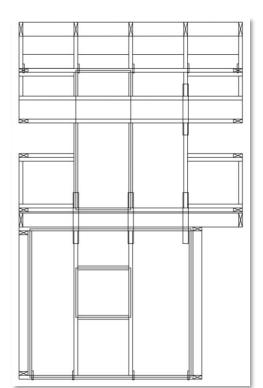


Figure 5: Sample AutoCAD Framing Plan; Cantilever Beam Not Pictured [3]

Task 3: Final Structural Analysis & Design (Cont.)

- Task 3.6: Tiedown and Anchor Design
- Task 3.7: Cantilever Beam Design
 - Task 3.7.1: Beam Member Selection
 - Task 3.7.2: Overturning Stability
- Task 3.8: Final Calculation Packet
- Task 3.9: Final Structural Drawings
- Task 3.10: Building Information Model

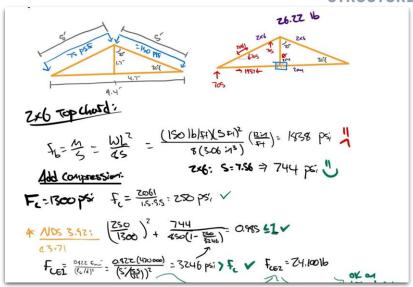


Figure 4: Sample Hand Calculations [3]

- Task 4.1: Material Procurement
- Task 4.2: Prefabrication
 - Task 4.2.1: Wall Panels
 - Task 4.2.2: Floor Panels
 - Task 4.2.3: Roof Assembly
- Task 4.3: Mock Assembly & Practice
- Task 4.4: Transportation Prep

Figure 5: Timber-Strong 2025 Prefabrication Construction [5]

Task 5: Competition Construction Process

- Task 5.1: Competition Construction
 - Pre-Build Setup
 - First & Second Floor Framing
 - Cantilever Beam Install
 - Second-Floor Walls & Roof Framing
 - Mid-Build Inspection
 - Cantilever Deflection Test
 - Safety Oversight

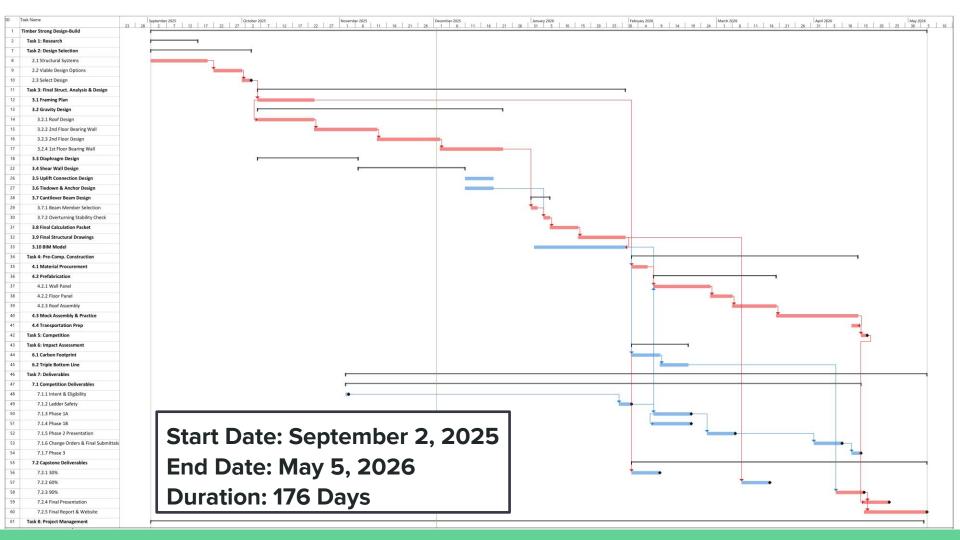
- Task 5.2: Deconstruction Phase
 - Panel-by-Panel Deconstruction
 - Donation/Recycling Plan
 - Team Responsibility
 - Liability Waiver
 - Stability Oversight

- Task 6.1: Carbon Footprint Calculation
 - Determine embodied carbon in structure with WoodWorks Carbon Calculator tool
 - Determine theoretical carbon footprint of structure at the scale of full-sized building
- Task 6.2: Triple Bottom Line Assessment
 - Societal, Environmental & Economic impacts of the project

Task 7: Deliverables

- Task 7.1: Competition Deliverables
 - Task 7.1.1: Intent and Eligibility Form
 - Task 7.1.2: Ladder Safety Training
 - Task 7.1.3: Phase 1A Electronic Files
 - Task 7.1.4: Phase 1B Electronic Files
 - Task 7.1.5: Phase 2 Presentation
 - Task 7.1.6: Change Orders/Final Submittals
 - Task 7.1.7: Phase 3 Electronic File

- Task 7.2: Capstone Deliverables
 - **Task 7.2.1: 30% Submission**
 - Includes Tasks 1-3.2
 - Task 7.2.2: 60% Submission
 - Includes Tasks 1-3.9
 - Task 7.2.3: 90% Submission
 - Includes Tasks 1-6.2
 - Task 7.2.4: Final Presentation
 - Task 7.2.5: Final Report
 - Task 7.2.6: Final Website



- Task 8.1: Team Coordination
- Task 8.2: Outreach & Volunteers
- Task 8.3: Safety Oversight & Training
- Task 8.4: Quality Control & Compliance
 - Task 8.4.1: Mock Inspections
 - Task 8.4.2: Drawing & Rules Review
 - Task 8.4.3: Pre-Competition Structural Audit

- Snow and seismic design
- Not liable for installation of the structure during repurposing

Staffing Plan

- Senior Project Manager (SPM)
 - O PE License; 13 years total experience

Design Positions:

- Project Engineer (PrE)
 - Structural PE License; 8 years total experience
- Engineer in Training (EIT)
 - EIT Certification; 4 years total experience

Construction Positions:

- Superintendent (SUP)
 - Extensive background in framing / contracting
- Health & Safety Specialist (HSS)
 - Ensure all safety codes & training are followed
- Construction Intern (INT)
 - Basic knowledge of construction process and terminology

Task 1: Research

Task 2: Design Selection

Task 6: Impact Assessment

Task 8: Project Management

Task 7: Deliverables

Task /Subtasks

Task 3: Final Structural Analysis & Design

Task 4: Pre-Competition Construction Phase

Total Hours

Task 5: Competition Construction Process

SUP

SPM

Position / Title

HSS

EIT

INT

PrE

Total

Hours

Cost of Engineering Services

Table 6: Cost of Engineering Services [4]

Category	Description	Quantity	Unit	Price Per		Cost
Personnel	Senior Project Manager	56	Hr	\$	220	\$12,320
	Project Engineer	169	Hr	\$	165	\$27,885
	Superintendent	83	Hr	\$	200	\$16,600
	Safety Officer	73	Hr	\$	80	\$5,840
	Engineer in Training	211	Hr	\$	85	\$17,935
	Construction Intern	86	Hr	\$	60	\$5,160
	Subtotal Personnel					\$85,740
Travel	Rental Van	5	Days	\$	74	\$368
	Driving Mileage	500	Miles	\$	0.41	\$205
	Per Diem	20	People-Day	\$	60	\$1,200
	Hotel Room	16	Room-Night	\$	300	\$4,800
	Subtotal Travel					\$6,573
Lab Use	"The Farm" Field Station	14	Days	\$	100	\$1,400
	Subtotal Lab Use					\$1,400
Materials	Lumber	400	Linear Feet	\$	0.75	\$300
	4x8 OSB Sheet	30	EA	\$	15	\$460
	Fasteners and Hardware	1	Lump Sum	\$	300	\$300
	Paint	10	Gal	\$	10	\$100
	Primer	10	Gal	\$	20	\$200
	Subtotal Material Cost					\$1,360
						4 27 272
Total Cost of Engineering Services						\$ 95,072

References

[1] ASCE, *Timber-Strong Design Build Rules*. American Society of Civil Engineers, Washington, DC. [Online]. Available: https://www.asce.org/-/media/asce-images-and-files/communities/students-and-younger-members/documents/asce-timber-strong-design-build-rules.pdf. [Accessed: Oct. 6, 2025].

[2] J. Cipollini, "Timber-Strong Design Build Competition — Utah Winners," *SE Blog*, Jun. 2022. [Online]. Available: https://seblog.strongtie.com/2022/06/timber-strong-design-build-competition-utah-winners/. [Accessed: Oct. 6, 2025].

[3] Z. Timmons, Personal Sketches, 2025.

[4] H. Seria, R. De Conto, S. Gibson, Z. Timmons, *Timber-Strong Design Build Competition Proposal*, 2025.

[5] "TimberStrong Design Build – Gallery," 2025 ASCE Intermountain Southwest Student Symposium, 2025. [Online]. Available: https://sce.nau.edu/capstone/projects/CENE/2025/TimberStrong/Gallery.html