Timber-Strong Design Build Competition Astro Jacks Engineering

CENE 486C 5/2/2025 Giselle Mata, Allison Harris, Colton Davis, Jesa'Lyn Waggoner

Project Overview

Design – Build Competition

- Analyzed and Designed a light framed timber structure
- Created 2D and 3D models
- Prefabricated structure per plans at NAU
- Competed at the ISWS Student Symposium
 - American Society of Civil Engineers
 - o April 10th, 2025
 - Tuscon, Arizona University of Arizona
- Client: Mark Lamer

Figure 1: Astro Jacks practice Construction day [1]

Constraints -Design

- Height < 12'
- 1st Story 6' x 8'
- 2nd Story 7'4" x 8'
- 1'4" Floor System Overhang
- 4'1" Floor Cantilever Beam
- 1st Story: 1 Door, 3 Windows
- 2nd Story: 4 Windows

Figure 2: Revit Elevation view

Constraints -Construction

- Restricted to Nominal Lumber 2x4 or larger
- Had to practice safe building practices
- Had to complete Ladder Safety Course
- Floor overhang mechanically shored until structure completion
- Simpson Stong Tie hardware not installed until build day
- PPE included hardhats, safety glasses, high-vis vests, and gloves
- Only 4-6 builders allowed on site

Figure 3: Temporary Shoring

Constraints - Loading

Figure 4: Gravity Loading

Initial Design- Timber Type

Table 1: Timber Type Decision Matrix											
Timber Decision	lype Matrix	Dou	glas Fir	Southe	ern Pine	Dougla	s Fir Larch	Не	em Fir	Spruce	e Pine Fir
Criteria	Weight (%)	Scor e	Weight Score	Score	Weight Score	Score	Weight Score	Score	Weight Score	Score	Weight Score
Cost	30	1	0.3	2	0.6	1	0.3	2	0.6	3	0.9
Availability	70	1	0.7	2	1.4	1	0.7	3	2.1	2	1.4
TOTAL	100		1.0		2		1.0		2.7		2.3

• Key Criteria: Cost (30% weight) and Availability (70% weight).

- Why Availability Matters: Majority of lumber was donated Hem Fir was most available.
- Scoring System: 1 (least favorable) to 3 (most favorable) for each criterion.

Initial Design- Roof Design Alternatives

Figure 6: Sketches of the Roof Design Alternatives

Initial Design- Design Alternatives

Table 2: Design Decision Matrix							
Design Decision	Design 1		Design 2		Design 3		
Criteria	Weight (%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Structural Integrity	30	2	0.6	3	0.9	1	0.9
Cost	10	2	0.2	2	0.2	1	0.1
Constructability	20	2	0.4	3	0.6	2	0.4
Aesthetic	20	2	0.4	1	0.2	3	0.6
Functionality	10	1	0.1	2	0.2	1	0.1
Sustainability	10	2	0.2	2	0.2	3	0.3
TOTAL	100		1.9		2.3		2.4

- Key weights: Structural Integrity (30%), Aesthetics & Constructability (20% each).
- Scored 1–3 based on performance in each category.
- **Design 3 chosen:** best overall score (2.4), strong in aesthetics & sustainability.
- **Design 2:** strongest structurally, easiest to build.
- **Design 1:** average across most categories.

Final Design – Calculations (Gravity Design)

- All Calculations Performed
 Using
 - o NDS
 - o NDS Supplement
 - o SDPWS
- Calculations done using ASD
- Minimum Depth of Beams were found based on Maximum Shear, Flexure, and Compression

Table 3: Roof Gravity Design							
Roof Gravity Design							
Member	Require	ed Force			Provided Depth (in)	Factor of Safety	
	Axial (lbs)	Shear (Ibs)	Moment (lb*ft)	Depth (in)			
Rafter	-	78.25	544.46	1.22	3.5	1.69	
Ridge Beam	-	82.4	2333.3	2.71	5.5	1.42	
Ridge Beam Studs	133.3	-	-	0.048	3.5	8.54	

Flexure Eq. (3.3-2) $f_b = \frac{M}{S} = \frac{6M}{bd^2}$

M = Maximum Moment b = Width of Beam d = Depth of Beam

- Shear Eq. (3.4-2) $f_{v} = \frac{3V}{2bd}$ V = Maximum Shear
- b = Width of Beamd = Depth of Beam

Final design – Continuous Load Path

Final design – Continuous Load Path (Force Transfer Around Openings)

Final Design – Lateral Design Factor of Safety

Table 4: Factor of Safety								
Factor of Safety								
	Component	Calculated Factor of Safety	Target Factor of Safety	Percent Difference				
	Roof	2.1		33%				
Diaphragm	Floor	2.3		42%				
	Average	age 2.1		33%				
	First Story	1.91	1.5	24%				
Shear Wall	Second Story	1.57		5%				
	Average	1.77		17%				

Final Design – Deflection

Table 5: Predicted Deflection Values						
Load Placement From Exterior Wall to delta	Deflection (in)					
4'0"	0.62					
3'9"	0.53					
3'6"	0.50					

0.5 in. < Deflection < 1.0 in. \checkmark

E4: ELEVATION WEST FACE

Figure 9: Deflected Cantilever with Point Load

Modeling – 2D Structural Drawings

Competition Requirements

- Framing Plans
- Shear Wall connection Details
- Panelized Diaphragms
- Shear wall sheathing type
- Fastening schedule
- Anchorage to the foundation
- Plan, Profile, Cross Sectional details and views

Figure 10: Elevation Views from the Plan Set

Modeling – 3D BIM Model

Figure 13: Framed Model in Revit

Figure 14: Elevation View in Revit

Astro Jacks Engineering

Construction – Prefabrication

Figure 15: Prefabricating 1st Story

Figure 16: 1st Story Wall partially framed

Figure 17: 1st Story Completed

Competition

- Panels Staged Prior to
 Competition
- Time limit of 90 minutes
- Restricted 18'x18' area
- Limited to ONLY battery powered drills

Figure 18: Competition Day with Structure laid out

Table 5: Score Sheet

Category	Maximum Points	Your Score
PHASE 1: REPORT		
Design Strength and Durability Analysis	82	57.5
Sustainable Design	18	18
Budget	20	13
Report Requirements	10	10
Subtotal - Phase 1	130	98.5
PHASE 2: DRAWINGS, BIM, VISUAL AID, GRAPHICS		
Visual Aid	10	10
Creativity & Aesthetics	20	25
BIM (Deliverables)	70	106
Deductions	-	-7.5
Subtotal - Phase 2	150	133.5
PHASE 3: PRESENTATION		
Presentation	10	9
Subtotal - Phase 3	10	9
BUILD DAY: CONSTRUCTION		
Accuracy and Demonstration of Load Path	50	41
Quality, Aesthetics and Speed	60	49
Structure Requirements	20	20
Build Time (BONUS)	5	1
Subtotal - Build Day	130 (+5)	111
TOTAL POINTS	420 (+5)	352

Competition

2025 ASCE Timber-Strong Design Build competition during the ISWS Student Symposium:

- <u>1st Place Overall: ASCE 2025 Design Build</u>
- <u>1st Place: BIM Modeling</u>

Measured Deflection
At 3'9" = 0.83"
Predicted deflection
At 3'9" = 0.53"

Figure 19: Measuring Deflection

Figure 20: Banquet with our 1st place plaques

Construction Lessons Learned

- Accurate measurements are critical

 Inaccurate cuts waste material
- Use Chalk Lines
 - Keeps cuts and edges straight and aligned.
- Detailed Construction Plans Matter
 - Every measurement should be labeled
 - Reduces on-site guesswork
- Hammering Takes Skill
 - Requires strength and precision
- Drilling is Tougher Than It Looks
 - o Requires pressure, balance, and a steady hand.
- Always Wear Gloves
 - Protects against splinters and rough handling of wood.

Figure 21: Prefabrication of Panel

Impacts

Impact	Timber	Cold Formed Steel	
Social	+ Local sourcing – Pest prone	+ Fire-resistant – Needs specialized labor	
Economic	+ Lower initial cost – Higher maintenance	+ Faster completion – Higher shipping cost	
Environmental	+ Reduces CO ₂ – Degrades faster	+ Recyclable – Non-renewable	Figure 22: Timber vs Cold Formed Steel

References

- HomeCo Hardware & Lumber Logo: <u>https://www.myhomco.com/?srsltid=AfmBOopEHG_jlgXIMqJBZCaXQ5CG4</u> <u>3aUL6aO9JV1T9zPrr8qSxS_7yZU</u>
- SImpson Strong-Tie Logo: <u>https://www.strongtie.com/</u>
- Timber vs Cold Formed Steel: <u>https://gharpedia.com/blog/benefits-of-using-steel-vs-wood/</u>

Thank You

