Dragon Mine Preliminary Assessment, Site Investigation & Remediation

Bureau of Land Management. Ground Guardians LLC.

Bowie Ching, Andres Garcia Rico, Zachary Kauranen, Jorja Whitcher CENE 486 (05/02/2025)

Introduction

Purpose:

Preliminary Assessment and Site Investigation to assess health risks and propose remedial action

Client:

Eric Zielske from the Bureau of Land Management

Figure 1. Location Map [1]

3

Figure 2: County Location Map [2]

Figure 3: Vicinity Map [3]

Work Plan

- Sampling and Analysis Plan (SAP)
- Health and Safety Plan (HASP)
- Lab Binder
- Decision Unit (DU)

Figure 4. Sampling Plan Map [4]

Site Investigation – Preliminary Assessment

Figure 5. Mine Shafts (PC Andres)

Figure 6. Site Features Map [5]

Site Investigation – Sampling

Figure 8. Zack Collecting Sample (PC Jorja)

- 51 Samples Collected \circ Integrated Sampling Method (ISM) o Grid • Transect
- In-situ XRF EPA Method 6200
- QA/QC

Laboratory Work – Drying, Sieving, XRF

Figure 9. Dried Sample (PC Jorja)

Figure 10. Sieve Setup (PC Jorja)

Figure 11. XRF Setup (PC Jorja)

XRF Analysis – As Correction & QA/QC

- XRF experiences interference reading As with high Pb concentrations
 - Interference causes higher As readings
- Used previous BLM team's correction equation
- Duplicate Analysis using Relative Percent Difference Equation
 - Relative percent difference must be less than or equal to 40%.

Sample ID	As RPD (%)	Pb RPD (%)
DU-1-2	13	32
DU-1-11	7	35
DU-3-3	34	32
DU-4-5	40	24

Table 1: Duplicate Analysis RPD

Equation 1: Arsenic Correction Equation

 $y = (-8E - 05)x^2 + 0.9132x$

Equation 2: Relative Percent Difference Equation

$$RPD = |S_i - S_d| \left(\frac{S_i + S_d}{2}\right) * 100\%$$

Where: RPD = Relative Percent Difference Si = Original Sample Concentration Sd = Duplicate Sample Concentration

Q

Human Health Contaminants of Concern

- Averaged XRF measurements
- Arizona Soil Remediation Levels [7]
- Determined COCs
 - Lead
 - Arsenic
- DU4-3 is now Hot Spot 5
 - 130,000 ppm Pb

Table 2: Arizona SRLs [6]

AZ SRLs	Res	Non-Res
Pb	400	800
As	10	10

Figure 12: HH COCs Pb Distribution Map [6]

Ecological Contaminants of Concern

- EPA Ecological Soil Screening Levels [8]
- Determined COCs
 - Lead
 - Selenium
 - Arsenic
 - Zinc
 - Copper
 - Nickel
 - Cobalt
 - Manganese
 - Chromium
 - Vanadium

Exposure Point Concentrations – Grid & Transect Samples

Equation 3: Geometric Mean

$$GEOMEAN = \sqrt[n]{x_1 * x_2 * \dots * x_n}$$

Equation 4: Cox Equation

Where:

- n = Number of samples
- S = Standard deviation
- x = Sample measurement

95% EPC = 50 % EPC + $\frac{S^2}{2}$ + 1.645 $\sqrt{\frac{S^2}{n} + \frac{S^4}{2(n-1)}}$

Table 4: Grid & Transect EPC

Location	Lead		Arsenic	
Location	50% EPC	95% EPC	50% EPC	95% EPC
DU 1	98.37	266.55	8.47	11.19
DU 3	556.52	4,246.07	15.15	19.62
DU 4	711.18	10,906.70	16.57	46.15

Exposure Point Concentrations – ISM Samples

- 50% EPC determined using the Arithmetic Average of the sample data
- 95% EPC determined to be Two Standard Deviations from the Average

Location	Lead		Arsenic	
Location 50% EPC	50% EPC	95% EPC	50% EPC	95% EPC
DU 5	262.54	308.81	6.47	8.85

Table	5:	ISM	EPCs

Exposure Scenarios

• Recreational ATV Use

- Adults for 30 years
- Children 6-12 for 6 years

• Remediation workers

- \circ Construction for 1 year
- Calculated intake doses for each scenario
 - Ingestion and Dermal
 - Carcinogenic and Non-Carcinogenic

Equation 5: Ingestion intake dose equation [10]

$$I = \frac{([EPC] \cdot CR \cdot EF \cdot ED)}{BW \cdot AT} \cdot 10^{-6}$$

Table 6: Worker-ingestion exposure parameters

Worker Exposure Scenario Parameters -Ingestion

Contact Rate [CR] (mg soil / day)	100
Exposure Frequency [EF] (hours/day)	8
Exposure Duration [ED] (days)	250
Average Body Weight [BW] (kg)	70
Averaging Time, Non-Carcinogenic [AT] (days)	250
Averaging Time, Carcinogenic [AT] (years)	70

15

Arsenic Risk

Table 8: Worker-ingestion exposure parameters

Arsenic Ingestion Risk			
Exposure Scenario	DU	Carcinogenic Risk (1E-6)	
		50% EPC	95% EPC
Worker	DU3	3.103	4.020
	DU4	3.395	9.455
Recreational ATV	DU3	1.530	1.983
(Adult)	DU4	1.674	4.663
Recreational ATV (Children 6-12)	DU3	0.421	0.546
	DU4	0.461	1.283

Equation 6: Carcinogenic risk equation [10]

 $Risk = I_c \cdot SF$

Equation 7: Noncarcinogenic risk equation [10]

 $HI = \frac{I_N}{RfD}$

Table 7: IRIS toxicity data

Slope Factor	Reference Dose
(mg/kg-day) ⁻¹	(mg/kg-day)
(Carcinogenic)	(Noncarcinogenic)
31.7	6E-5

16

Lead Risk

- $PbB > 5 \ \mu g/dL$ is considered at risk for lead toxicity
- Probability of risk to fetus to be less than 5%

PbB of adult worker (µg/dL)			
DU	95% EPC	50% EPC	
DU3	14.6	2.4	
DU4	36.5	2.9	

Table 10: ALM results – worker exposure

Table 9: IEUBK results – maximum exposure

Child ATV 95% EPC			
DU	Age Range (years)	Blood Pb (µg/dL)	
DU3	6 to 7	1.0	
DU4	6 to 7	1.1	

Table 11: ALM results – fetal risk

Probability of risk to fetus (%)				
DU	95% EPC	50% EPC		
DU3	94.9	8.0		
DU4	99.9	13.9		

Remedial Action Objectives

- 1. Limit contaminated soil from tailings/hotspots migrating into the wash
- Mitigate HH risk by reducing lead and arsenic concentrations in DU-3, DU-4, and in hot spot areas to below nonresidential SRLs or to background levels
- 3. Reduce risk to wildlife from contaminant exposure in DU-4 and hotspot areas

Problem Areas Based on Risk:

- ECO: DU4, Hot Spots
- HH: DU3, DU4, Hot Spots

Figure 15. Sampling Plan Map [3]

Remedial Action Decision Matrix

Option #	Remedial Action	Effectiveness	Implementability	Cost	Total
1	Excavate HS, DU3, & DU4 to onsite repository	++	+	-	++
2	Excavate HS to onsite repository; excavate/soil wash/replace DU4; in-situ solidification of DU3	+			
3	Excavate HS to DU3 and solidify; excavate/soil wash/replace DU4.	+	-	+	+
4	Excavate HS to DU3 and cap w/ retaining wall; excavate/soil wash/replace DU4	+	+	++	++++

Table 12: Remedial Action Decision Matrix

19

Remedial Action Design

- 4.4 million dollars
- 1 year duration
- 18" bentonite clay cap
- Retaining wall

Impacts

No Remediation:

- Continued risk to human health
- Continued risk to wildlife
- Possible migration of contaminants
- Increased medical costs for locals

Yes Remediation:

- Less risk to human health
- Less risk to wildlife
- Eliminates migration of contaminants
- Economic gain for local businesses
- Economic gain to workers
- Economic loss to BLM

Conclusion

- The Ground Guardians determined that the Dragon Mine site is contaminated with heavy metals.
- Human Health COCs: lead and arsenic
- Ecological COCs: lead, selenium, arsenic, zinc, copper, nickel, cobalt, manganese, chromium, and vanadium
- Risk calculations were completed for the COCs based on the concentrations determined from laboratory testing.
- Remedial action limits migration and mitigates human and ecological health risk.

Works Cited

- [1] J. Whitcher, "Dragon Mine: Preliminary Assessment Location Map," AUTOCAD, 2014
- [2] A. G. Rico, "Dragon Mine: Preliminary Assessment Location Map," AUTOCAD, 2014
- [3] A. G. Rico, "Dragon Mine: Preliminary Assessment Vicinity Map," AUTOCAD, 2014
- [4] A. G. Rico, "Dragon Mine: Sampling Plan Map," AUTOCAD, 2014
- [5] A. G. Rico, "Dragon Mine: Site features Map," AUTOCAD, 2014
- [6] A. G. Rico, "Dragon Mine: Contaminant Distribution Maps," AUTOCAD, 2014
- [7] "Appendix A Soil Remediation Levels (SRLs), Ariz. Admin. Code § tit. 18, ch. 7, art. 2, app A | Casetext Search + Citator," *Casetext.com*, 2025. <u>https://casetext.com/regulation/arizona-administrative-code/title-18-environmental-quality/chapter-7-department-of-environmental-quality-remedial-action/article-2-soil-remediation-standards/appendix-a-soil-remediation-levels-srls (accessed Mar. 22, 2025).</u>
- [8] "Ecological Soil Screening Level (Eco-SSL) Guidance and Documents | US EPA," US EPA, Sep. 02, 2015. https://www.epa.gov/risk/ecological-soil-screening-level-eco-ssl-guidance-and-documents
- [9] B. Ching, "Conceptual Site Model," GoodNotes2, 2025
- [10] M. D. LaGrega, P. L. Buckingham and J. C. Evans, Hazardous Waste Management, Long Grove: Waveland Press, 2001
- [11] J. Whitcher, "Dragon Mine: Remedial Design Map," AUTOCAD, 2014

QUESTIONS?