Concrete Canoe

HUNTER KASSENS, ERIC MOORE, STEVEN PROCACCIO, COLE ROBERTSON, HANNAH THELEN

PONDEROSA PINECONES

CENE 486C

4/22/2022

Project Introduction

General Introduction

- Build a concrete canoe
- Follow guidelines provided by the ASCE concrete canoe competition (C4)
- Race and compete with canoe in ISWS competition
- Conference held at UNLV April 13th 16th

Overall Team Goals

- Create strong, workable mix
- Design hull and fabricate mold
- Construct canoe with help of mentee program

Figure 1: ASCE Concrete Canoe Competition Logo [1]

Mix Design

Cementitious Materials

- Type 1 Portland Cement
- Silica Fume
- Class-C Fly Ash

Aggregates

- UL-FGA
- Expanded Perlite
- Utelite
- Recycled Concrete Canoe

Admixtures

- MasterGlenium® 7500
- Masterset® DELVO
- MasterLife® SRE-35

Secondary Reinforcement

• PVA-15 8mm Reinforcing Fibers

Table 2: Concrete Mix Properties

Concrete Properties			
Property	Value	Units	
Wet Density	76.3	pcf	
Dry Density	74	pcf	
Compressive Strength (14-day)	1190	psi	
Tensile Strength	180	psi	
Slump	0.5	inches	
Air Content	2.1	%	

Figure 4: Steven Hand-Mixing Photo Credit: Hunter Kassens

Figure 5: Mix Test Break Photo Credit: Hunter Kassens

Hull Design

Ponderosa Pinecone Dimensions Value Units **Property** Length 217 inches Maxiumum inches 27.5 Width Maximum 14.2 inches Depth **Thickness** 0.5 inches Weight 232.2 pounds

Figure 6: Isometric Image of Canoe (SolidWorks)

Table 3: Canoe Properties

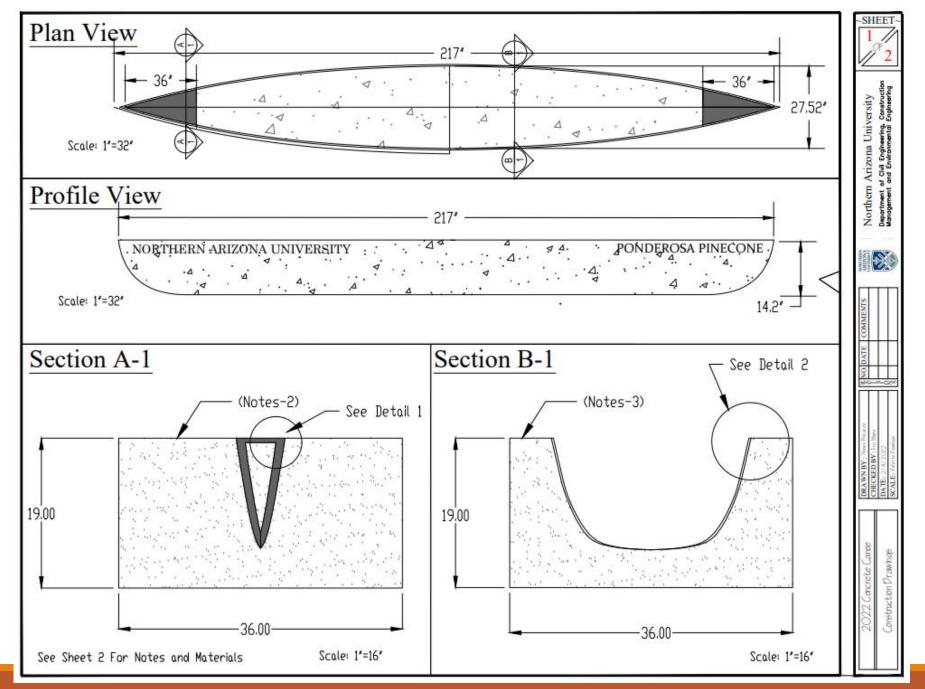
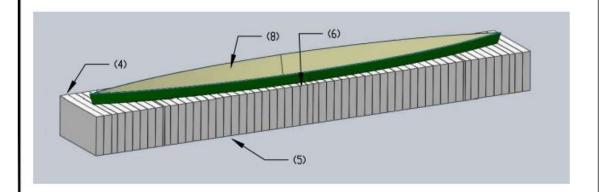
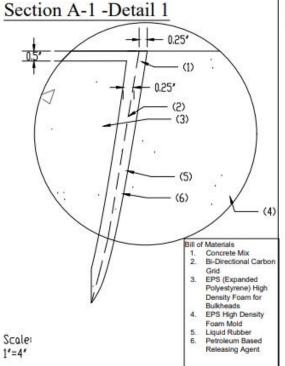
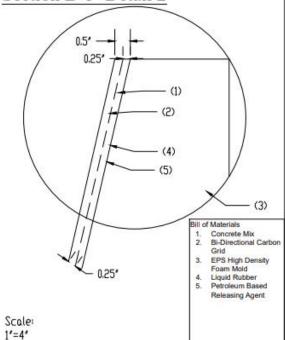



Figure 7: Final Canoe Construction Drawings


Isometric View


Notes

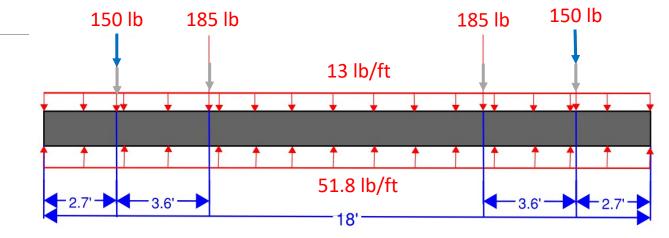
- A two-level layering scheme will be utilized for concrete. placement, with two layers of concrete mix at a thickness of ‡" each, with bi-directional carbon grid in between.
- Section A-1 represents the first 36" of the canoe on the bow and
- Section B-1 represents the interior of the canoe between the
- Mold is displayed with section cuts to display construction
- Mold is split into 4" sections for constructability purposes. Liquidized rubber is applied to the mold for protection.
- Retarder Admixture is added to the concrete mix to decrease set time and reduce risk of delaminating in between layers.
- Canoe is raised from the mold to show finished product inside of

Not to Scale

Section B-1 -Detail 2

Bill of Materials			
Material	Weight		
Utelite Crushed Fines	15.57 lbs.		
Utelite 10mesh	15.57 lbs. 41.35 lbs.		
Recycled Aggregate			
UL-FGA	20.41 lbs.		
No. 6- Expanded Perlite	10.2 lbs. 0.16 lbs. 46.19 lbs. 12.89 lbs.		
Delvo			
Type I/II/V Cement			
Class C Fly Ash			
Silica Fume	4.3 lbs.		
Glenium 7500	0.49 lbs.		
SRA-35	0.04 lbs.		
SSD Water	24.17 lbs.		
Water for CM Hydration	25.35 lbs.		
Fiber Mesh	0.11 lbs.		

Northern Arizona University Department of CM Engineering, Construction Management and Environmental Engineering


Structural Analysis

Assumptions

- Symmetrical U-Shaped Beam
- Load cases:
 - Female Tandem
 - Male Tandem
 - Four Person
 - Simply Supported
- Uniform loading creates a uniformly distributed buoyancy force acting upwards

Analysis

- Dependent on the weight of the mix design and the length of the canoe
- Conducted in Microsoft Excel

Structural Analysis

Moment Summary Table

Table 4: Moment Summary

Load Case	Positive Moment Magnitude (Ib*ft)	Positive Moment Location (ft)	Negative Moment Magnitude (lb*ft)	Negative Moment Location (ft)	
Female Tandem	60.7	2.7, 15.3	-269.6	9	
Male Tandem	74.1	2.7, 15.4	-329.3	9	
4-Person	206.8	6.3, 11.7	N/A	N/A	
Simply Supported (right side up)	607.5	9	N/A	N/A	
Simply Supported (upside down)	607.5	9	N/A	N/A	

Freeboard Summary Table

Table 5: Freeboard Summary

Load Case	Freeboard (in.)			
Female Tandem	9.7			
Male Tandem	9.4			
4-Person	7			
Self-Weight	12.3			

Shear & Moment

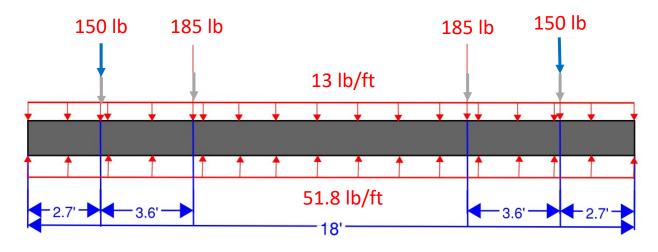
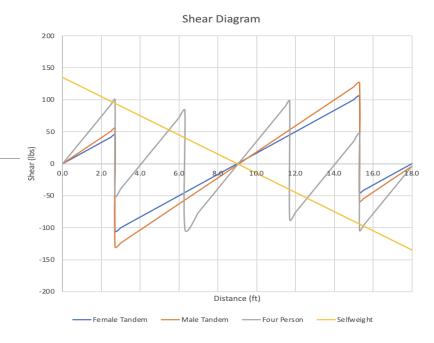
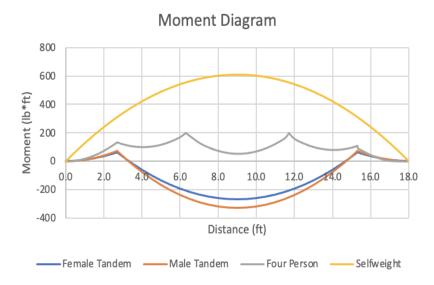




Figure 9: Load Distribution

Construction

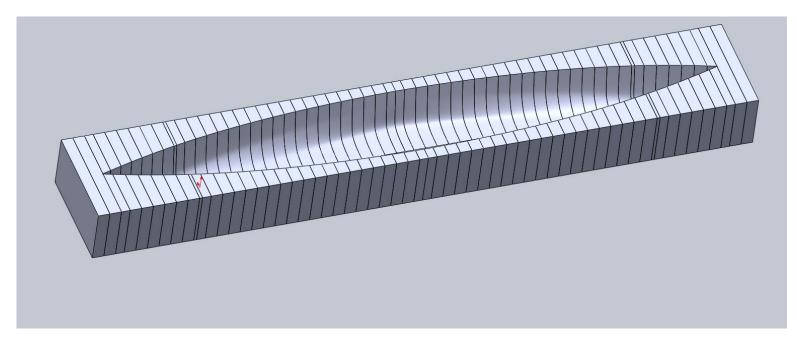


Figure 11: Isolated Image of Mold from SolidWorks

Table 6: Mold Procurement Details

Full Size Mold Procurement			
Cross Sections	60		
Cross Section Thickness	Varies from 4", 3" & 1		
Foam Density	1.5 lb/ft^3		
Material	EPS (Expanded Polystyrene)		
Manufacturer	F3 Online (Palm Springs)		

Mold Procurement

Figure 12: Gluing Mold Pieces Together
Picture Credit: Steven Procaccio

Figure 13: Mold After Sanding Picture Credit: Hunter Kassens

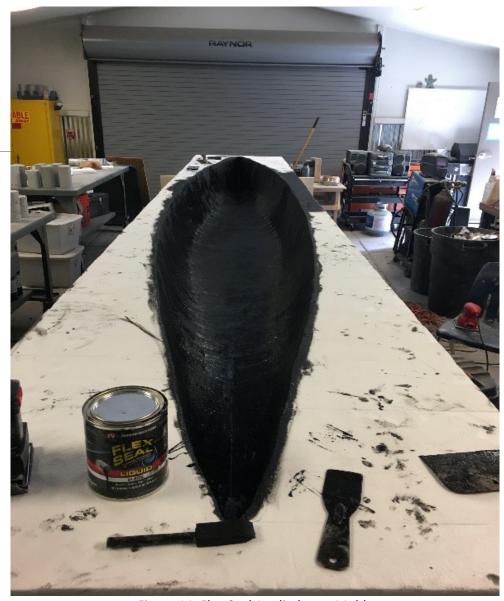


Figure 14: Flex Seal Applied onto Mold Picture Credit: Hunter Kassens

Concrete Pour

Figure 15: Placing Reinforcement Picture Credit: Hunter Kassens

Figure 16: Team Hand-Mixing Picture Credit: Hunter Kassens

Figure 17: Working with Mentee

Cure Chamber Fabrication

- Made up of PVC piping and tarp
- Frame recycled from previous teams
- Designed to keep Canoe above 95% humidity for first 14 days
- Used in conjunction with humidifiers

Figure 18: Curing Chamber Picture Credit: Hannah Thelen

Conference Deliverables

Table 7: Summary of Important Dates/Deadlines [1]

ITEM	DATE
Issuance of 2022 Request for Proposal Solicitation	September 7, 2021
Deadline for Submission of Preliminary Project Delivery Schedule, Letter of Intent, and RFQ Pre-Qualification Form	November 5, 2021
Last Day to Submit RFI's to the C4	January 21, 2022
ASCE Student Chapter Annual Reports/Dues Deadline	February 1, 2022
Issuance of RFI Summary	February 1, 2022
Project Proposal, Enhanced Focus Area Report, and MTDS Addendum Deadline (Symposia Competition)	February 18, 2022
ASCE Student Regional Symposia Competitions	April 13-16, 2022
Project Proposal, Enhanced Focus Area Report, and MTDS Addendum Deadline (Society-Wide Finals)	May 10, 2022
2022 ASCE Concrete Canoe Competition, hosted by Louisiana Tech University, Ruston, LA	June 3-5, 2022

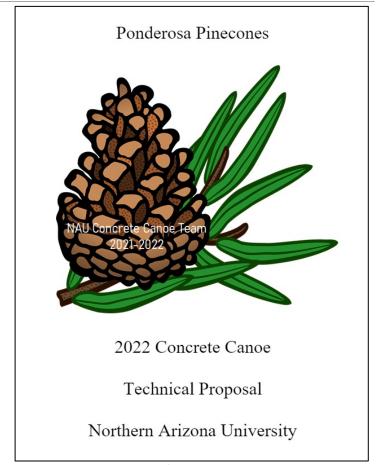


Figure 19: Conference Proposal Cover

Enhanced Focus Areas

Table 8: Enhanced Focus Areas Design Matrix

Enhanced Focus Areas: Decision Matrix						
	Criteria	Innovation	Sustainability	Cost	Practicality	Total Score
Alternatives	Weight	0.40	0.20	0.15	0.25	100%
Advanced	Raw Score	6	3	2	3	4.05
Reinforcing	Weighted	2.4	0.6	0.3	0.75	
Construction	Raw Score	5	5	2	6	<i>1</i> O
Techniques	Weighted	2	1	0.3	1.5	4.8
Website for Future	Raw Score	5	8	9	7	6.7
Teams	Weighted	2	1.6	1.35	1.75	6.7
Fluid Dynamic	Raw Score	7	6	4	2	Е 1
Analysis	Weighted	2.8	1.2	0.6	0.5	5.1
Mentee Training	Raw Score	4	9	7	8	6.45
	Weighted	1.6	1.8	1.05	2	0.45
Full Scale	Raw Score	6	4	7	4	ГЭГ
Construction Plans	Weighted	2.4	0.8	1.05	1	5.25

Enhanced Focus Areas

Project Information

Project Location
Project Description
Project Constraints
Tasks
Gantt Chart
Design Alternatives
Final Design Details

Figure 21: Concrete Canoe Website

Conference Results

Presentation – 1st Place

Final Product – 1st Place

Project Proposal – 3rd Place

• EFA Report – 3rd Place

Paddling – 4th Place

Overall – 2nd Place

Figure 24: Races Photo Credit: Alexa Rosenthal

Impacts

- Societal
- Environmental
- Economic

Figure 26: Canoe during Sanding Photo Credit: Cole Robertson

References

[1] Committee on Concrete Canoe Competitions, "Concrete Canoe Competition - Request for Proposals," ASCE, Reston, 2021.

Questions?