Concrete Canoe

HUNTER KASSENS, ERIC MOORE, STEVEN PROCACCIO, COLE ROBERTSON, HANNAH THELEN

PONDEROSA PINECONES

CENE 476

12/3/2021

Purpose and Client

- Build a concrete canoe
- Follow guidelines provided by the ASCE concrete canoe competition
- Race canoe in ISWS competition

Figure 2: Mark Lamer, PE; Client [2]

Categories	Maximum Points				
Project Proposal	25				
Enhanced Focus Area	5				
Technical Presentation	20				
Final Product Prototype	25				
Race Demonstration (5 events)	25				
Total Possible	100				

Figure 1: Competition Point Breakdown by Category [1]

- Client is Mark Lamer, PE
- Interest in this project due to past participation in event
- NAU's Student Chapter of ASCE faculty advisor

Location and Background

- Conference held at UNLV in April 2022
- Region is the Intermountain Southwest Symposium
- Region includes schools from Arizona, Nevada, Utah, and Idaho

- NAU has Built Concrete Canoes since 1977
- First Concrete Canoe Competition was in 1988
- Last Year's Team Place 4th Overall in Region
- 2019-2020 Team Placed 9th
- 2018-2019 Team Placed 11th

Figure 3: VolCanoe Concrete Canoe Team, 2018-2019 [4]

Constraints

Capstone

 Must follow guidelines and rubrics provided by grading instructor for all deliverables

Figure 5: ASCE Concrete Canoe Competition Logo [1]

ASCE Concrete Canoe Competition

- Max Hull Length: 22 ft
- A minimum of 50% of the total aggregate volume shall be composed of:
- (a) Commercially-available lightweight aggregate (meeting the requirements of ASTM C330)
- (b) Recycled concrete aggregate (RCA)
- (c) A combination of these.

- Task 1: Enhanced Focus Area
- Task 2: Mix Design
 - Task 2.1: Mix Design Research
 - Task 2.1.1 Cementitious Materials
 - Task 2.1.2 Aggregates
 - Task 2.1.3: Admixtures
 - Task 2.2: Develop an Initial Mix
 - Task 2.3: Mix Design Testing
 - Task 2.3.1: Slump Test
 - Task 2.3.2: Unit Weight of Mix
 - Task 2.3.3: Compressive Strength
 - Task 2.3.4: Tensile Strength
 - Task 2.4: Iterative Mix Design and Testing
 - Task 2.5: Final Mix Design

- Task 3: Hull Design
 - Task 3.1: Hull Design Research
 - Task 3.2: Software Modeling
 - Task 3.2.1: Solidworks
 - Task 3.2.2: MaxSurf
 - Task 3.3: Structural Analysis
 - Task 3.4: Final Hull Design

Figure 6: Ponderosa Concrete Canoe Team, 2020-2021, Mentees Preforming Slump Test [5]

- Task 4: Reinforcement
 - Task 4.1: Research
 - Task 4.2: Analysis and Testing
 - Task 4.3: Final Reinforcement Design

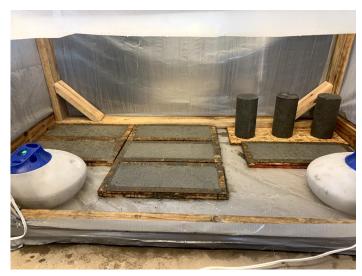
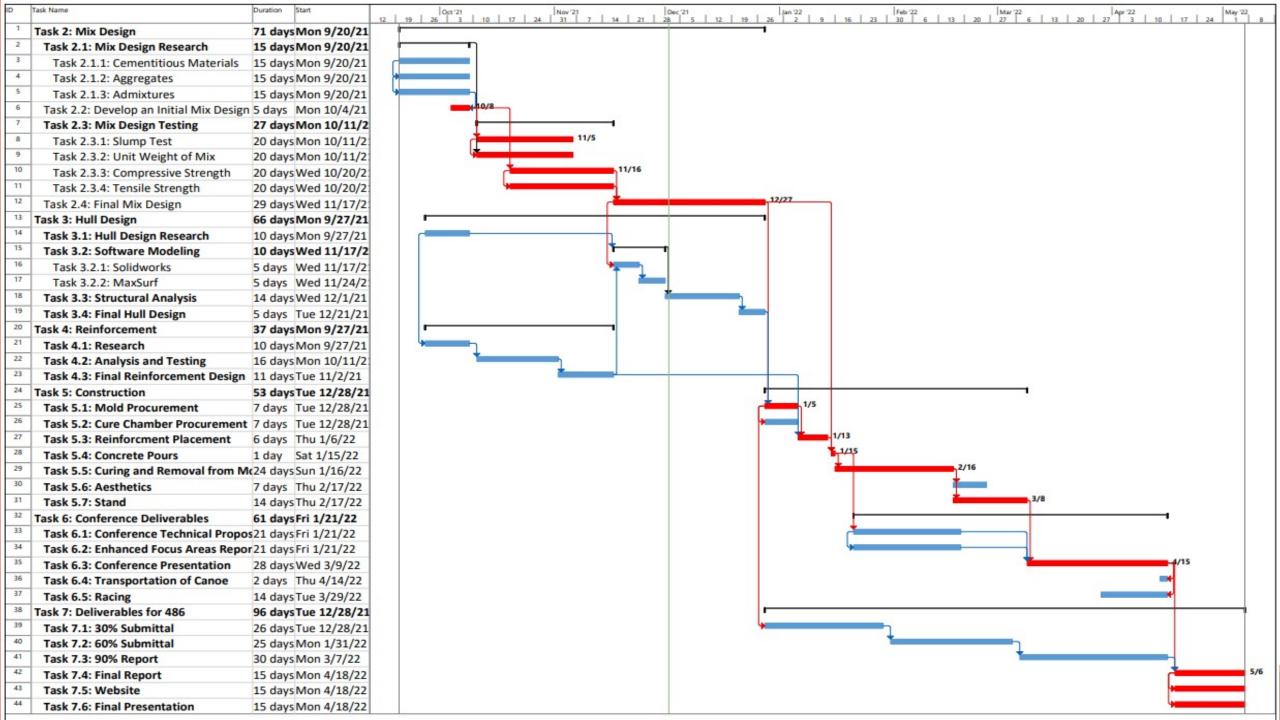


Figure 7: Ponderosa Concrete Canoe Team, 2020-2021, Mini Beams Curing in Curing Chamber[5]

- Task 5: Construction
 - Task 5.1: Mold Procurement
 - Task 5.2: Cure Chamber Procurement
 - Task 5.3: Reinforcement Placement
 - Task 5.4: Concrete Placement
 - Task 5.5: Curing and Removal from Mold
 - Task 5.6: Apply Aesthetics
 - Task 5.7: Create Stand

- Task 6: Conference Deliverables
 - Task 6.1: Complete Conference Technical Proposal
 - Task 6.2: Complete Enhanced Focus Areas Report
 - Task 6.3: Give Conference Presentation
 - Task 6.4: Transport Canoe
 - Task 6.5: Race Canoe

- Task 7: Deliverables for CENE 486
 - Task 7.1: Complete 30% Deliverables
 - Task 7.2: Complete 60% Deliverables
 - Task 7.3: Complete 90% Report
 - Task 7.4: Complete Final Report
 - Task 7.5: Complete Final Website
 - Task 7.6: Give Final Presentation


Figure 8: VolCanoe Concrete Canoe Team, 2018-2019, ASCE Members at Conference [4]

- Task 8: Project Management
 - Task 8.1: Project Meetings
 - Task 8.1.1: Team Meetings
 - Task 8.1.2: GI/Client Meetings
 - Task 8.1.3: TA Meetings
 - Task 8.2: Budget Management
 - Task 8.3: Schedule Management
 - Task 8.4: Fundraising
- Task 9: Impacts
 - Task 9.1: Social
 - Task 9.2: Economic
 - Task 9.3: Environmental

- Exclusions: No Exclusions within the Project Scope
 - All Aspects of Project Outlined to Reflect and Achieve Deliverables According to CENE 486 and C4 RFP

Table 1: Summary of Important Dates/Deadlines [1]

ITEM	DATE				
Issuance of 2022 Request for Proposal Solicitation	September 7, 2021				
Deadline for Submission of Preliminary Project Delivery Schedule, Letter of Intent, and RFQ Pre-Qualification Form	November 5, 2021				
Last Day to Submit RFI's to the C4	January 21, 2022				
ASCE Student Chapter Annual Reports/Dues Deadline	February 1, 2022				
Issuance of RFI Summary	On or about February 1, 2022				
Project Proposal, Enhanced Focus Area Report, and MTDS Addendum Deadline (Symposia Competitions)	February 18, 2022				
ASCE Student Symposia Competitions	March to Late April 2022				
Project Proposal, Enhanced Focus Area Report, and MTDS Addendum Deadline (Society-wide finals)	May 10, 2022				
2022 ASCE Concrete Canoe Competition, hosted by Louisiana Tech University, Ruston, LA	June 3-5, 2022				

Staffing

- Predicted number of hours for each staffing position
- Staffing positions and abbreviations are described below

Table 3: Staffing

Staff Positions							
Title	Abbreviation						
Principal Design Engineer	PDE						
Design Manager	DM						
Project Construction Manager	PCM						
Construction Superintendent	CS						
Project Design Engineer (P.E.)	PE						
Quality Manager	QM						
Graduate Field Engineer (E.I.T.)	EIT						
Technician/Drafter	TD						
Laborer/Technician	LT						
Clerk/Office Admin	OA						
Outside Consultant	OC						

Table 2: Staffing Matrix

Table 2. Staffing Matrix											
Task	PDE	DM	PCM	CS	PE	QM	EIT	TD	LT	OA	OC
Task 1: Enhanced Focus Area	4	4	4	0	4	4	4	4	4	0	0
Task 2: Mix Design	8	52	0	4	28	50	64	2	82	0	0
Task 2.1: Mix Design Research	3	30	0	0	6	0	12	0	0	0	0
Task 2.1.1: Cementitious Materials	1	10	0	0	2	0	4	0	0	0	0
Task 2.1.2: Aggregates	1	10	0	0	2	0	4	0	0	0	0
Task 2.1.3: Admixtures	1	10	0	0	2	0	4	0	0	0	0
Task 2.2: Develop an Initial Mix	0	6	0	0	6	10	20	0	40	0	0
Task 2.3: Mix Design Testing	4	16	0	4	16	40	32	0	42	0	0
Task 2.3.1: Slump Test	1	4	0	1	4	10	8	0	10	0	0
Task 2.3.2: Unit Weight of Mix	1	4	0	1	4	10	8	0	10	0	0
Task 2.3.3: Compressive Strength	1	4	0	1	4	10	8	0	20	0	0
Task 2.3.4: Tensile Strength	1	4	0	1	4	10	8	0	2	0	0
Task 2.4: Final Mix Design	1	0	0	0	0	0	0	2	0	0	0
Task 3: Hull Design	6	10	4	0	8	12	8	34	9	0	0
Task 3.1: Hull Design Research	1	6	0	0	6	6	6	0	0	0	0
Task 3.2: Software Modeling	2	4	0	0	0	4	0	32	8	0	0
Task 3.2.1: Solid Works	1	2	0	0	0	2	0	16	4	0	0
Task 3.2.2: MaxSurf	1	2	0	0	0	2	0	16	4	0	0
Task 3.3: Structural Analysis	2	0	0	0	2	2	2	0	0	0	0
Task 3.4: Final Hull Design	1	0	4	0	0	0	0	2	1	0	0
Task 4: Reinforcement	11	24	8	0	0	10	8	10	10	0	0
Task 4.1: Research	8	8	0	0	0	2	2	2	2	0	0
Task 4.2: Analysis and Testing	2	16	4	0	0	8	6	8	8	0	0
Task 4.3: Final Reinforcement Design	1	0	4	0	0	0	0	0	0	0	0
Task 5: Construction	6	10	- 11	9	8	4	24	2	2	0	4
Task 5.1: Mold Procurement	0	2	2	1	2	0	10	2	2	0	4
Task 5.2: Cure Chamber Procurement	0	0	2	0	0	0	4	0	0	0	0
Task 5.3: Reinforcement Placing	6	6	2	6	6	0	2	0	0	0	0
Task 5.4: Concrete Pours	0	0	2	2	0	2	4	0	0	0	0
Task 5.5: Curing and Removal from Mold	0	0	2	0	0	2	2	0	0	0	0
Task 5.6: Aesthetics	0	2	1	0	0	0	2	0	0	0	0
Task 6: Conference Deliverables	32	12	0	0	46 30	10	58	0	0	0	0
Task 6.1: Conference Technical Proposal	16	0	0	0	16	6 4	16 12	0	0	0	0
Task 6.2: Enhanced Focus Areas Report	4 12	12	0	0	0	0	0	0	0	0	0
Task 6.3: Conference Presentation	0	0	0	0	0	0	5	0	Ö	0	0
Task 6.4: Transportation of Canoe Task 6.5: Racing	0	0	0	0	0	0	25	ö	0	0	0
Task 7: Deliverables for CENE 486	25	0	0	0	80	34	90	4	4	0	0
Task 7.1: 30% Submittal	2	0	0	0	12	4	26	0	0	0	0
Task 7.2: 60% Submittal	2	0	Ö	0	16	4	26	ő	ő	0	0
Task 7.3: 90% Submittal	4	Ö	Ö	0	30	4	16	ő	Ö	Ö	ő
Task 7.4: Final Report	8	Ö	ő	0	16	4	6	ő	ő	Ö	ő
Task 7.5: Website	1	0	Ö	0	0	10	12	4	4	0	ő
Task 7.6: Final Presentation	8	0	Ö	0	6	8	4	0	0	Ö	ő
Task 8: Project Management	41	9	9	9	9	9	9	9	9	27	9
Task 8.1: Project Meetings	9	9	9	9	9	9	9	9	9	9	9
Task 8.1.1: Team Meetings	3	3	3	3	3	3	3	3	3	3	3
Task 8.1.2: Grading Instructor/Technical Advisor Mee	3	3	3	3	3	3	3	3	3	3	3
Task 8.1.3: Client Meetings	3	3	3	3	3	3	3	3	3	3	3
Task 8.2: Budget	10	0	Ö	0	0	0	0	0	0	6	0
Task 8.3: Schedule	12	Ö	Ö	0	ő	ő	Ö	ő	ő	6	ő
Task 8.4: Fundraising	10	0	Ö	0	0	0	ő	ő	ő	6	ő
Task 9: Impacts	3	0	0	0	0	0	0	0	0	3	0
Task 9.1: Social	1	0	0	0	0	0	0	0	0	1	0
Task 9.2: Economical	1	ő	ő	0	ő	ő	ő	ő	ő	1	ő
Task 9.3: Environmental	1	0	ő	0	ő	Ö	ő	ő	ő	1	0
Total (EA- hours)	136	121	36	22	183	133	265	65	120	30	13
Project Total		121	- 50		,55	130	200		.20	30	,0
i io est rotar											

Costs

 Personnel types and rates provided by C4 RFP [1]

Table 5: Cost Summary

Cost of Engineering Services Summary						
Description		Cost				
Personnel	\$	39,600				
Travel	\$	1,795				
Lab Use	\$	1,000				
Materials	\$	1,514				
Total	\$	43,909				

Table 4: Cost Estimate

Table 4. Cost Estillate									
Engineering Services Cost Estimate									
Description	QTY	Unit of Measure	Rate	(USD/UM)		Cost			
PERSONNEL (direct employee costs + indirect employee costs)									
Principal Design Engineer	136	HR	\$	50	\$	6,800			
Design Manager	121	HR	\$	45	\$	5,445			
Project Construction Manager	36	HR	\$	40	\$	1,440			
Construction Superintendent	22	HR	\$	40	\$	880			
Project Design Engineer (P.E.)	183	HR	\$	35	\$	6,405			
Quality Manager	133	HR	\$	35	\$	4,655			
Graduate Field Engineer (E.I.T.)	265	HR	\$	25	\$	6,625			
Technician/Drafter	65	HR	\$	20	\$	1,300			
Laborer/Technician	120	HR	\$	25	\$	3,000			
Clerk/Office Admin	30	HR	\$	15	\$	450			
Outside Consultant	13	HR	\$	200	\$	2,600			
	Personnel Total								
TRAVEL									
Travel for Material Acquisition		9 80000	AD 11						
Transportation	800	Miles	\$	0.46	\$	368			
Hotel Arrangements	1	Nights	\$	191	\$	191			
Travel for Conference									
Transportation	600	Miles	\$	0.46	\$	276			
Hotel Arrangements	4	Nights (for 2 rooms)	\$	240	\$	960			
	32		9.9	Travel Total	\$	1,795			
Lab Use									
General Lab Access	10	Days	\$	100	\$	1,000			
		0000	La	b Use Total	\$	1,000			
Materials	15.								
Cementious Materials	10	Cubic Feet	\$	10	\$	100			
Aggregates	12	Cubic Feet	\$	1 5	\$	180			
Admixtures	2	Gallon	\$	12	\$	24			
Reinforcement	15	Square Yard	\$	14	\$	210			
Mold	1	N/A	\$	1,000	\$	1,000			
Materials Total									
			P	roject Total	\$	43,909			

References

- [1] Committee on Concrete Canoe Competitions, "Concrete Canoe Competition Request for Proposals," ASCE, Reston, 2021.
- [2] "Mark Lamer Civil Engineering Senior Lecturer at Northern Arizona University," LinkedIn. [Online]. Available: https://www.linkedin.com/in/mark-lamer-49203227. [Accessed: 03-Oct-2021].
- [3] "University of Nevada, Las Vegas," Google maps. [Online]. Available: https://www.google.com/maps/place/University+of+Nevada,+Las+Vegas/@36.107062,-115.1471909,15z/data=!4m5!3m4!1s0x80c8c501997ee05f:0xe38117c11c6f42c6!8m2!3d36.1074857!4d-115.1434507. [Accessed: 05-Oct-2021].
- [4] Northern Arizona University, Concrete canoe (2019), "VolCanoe Final Presentation," Northern Arizona University, Flagstaff, 2019.
- [5] Northern Arizona University, Concrete canoe (2021), "Ponderosa Final Website Photo Gallery," Northern Arizona University, Flagstaff, 2021.

References

- [6] Northern Arizona University, "Welcome to NAU Travel," Northern Arizona University, 2021. [Online]. Available: https://in.nau.edu/comptroller/travel-welcome/. [Accessed 7 November 2021].
- [7] "How much does it cost to travel to Palm Springs?," Budget Your Trip, 2020. [Online]. Available: https://www.budgetyourtrip.com/united-states-of-america/palm-springs. [Accessed 7 November 2021].
- [8] S. Lock, "Average daily room rate in Las Vegas in the United States from 2002 to 2020," Statista, 2020. [Online]. Available: https://www.statista.com/statistics/221047/daily-room-rate-in-las-vegas/. [Accessed 7 November 2021].
- [9] Northern Arizona University, Concrete Canoe (2021), Capstone Final Proposal, Flagstaff, 2021.
- [10] J. Andre, F3 Online, Inc. a.k.a. EPS Products Fabrication of Foam & Metal Products, Palm Springs, 2021.

Questions?