Stormwater Utilization on NAU Campus

MADI MARCOLINA, DORSHANNA COOLIE, JIAYU ZHANG CENE 476C

MAY 10TH 2018

Project Understanding

- Client: Jon Heitzinger (Associate Director of NAU Utility Services)
- Technical Advisor: Jeffery Heiderscheidt (CECMEE Lecturer)
- Location on Northern Arizona University (NAU): Science and Health Building (SHB)
- Purpose: To utilize the collected and stored stormwater from the three detention tanks near SHB to reuse for the heating & cooling plant and irrigation
- Rainwater harvesting: capture, storage, and reuse of stormwater

Location of Detention Tanks

Table 1: Detention Tank Parameters

Tank Number	Volume (ft ³)	Volume (full) Gal.
1	7,917	59,222
2	7,917	59,222
3	1,005	7,520

Figure 2. Detention Tank Location [2]

Project Background

Heat and Cooling Towers

Irrigation Location

Figure 3. Heating and Cooling Plant (West View) Taken by: Dorshanna Coolie Figure 4. East West View of SHB [3]

Challenges & Constraints

- Challenges
 - Coordination with multiple NAU facilities
 - Lack of data on seasonal variations in rainfall data
- Constraints
 - Criteria for pipes: C-900 (PVC-material), depth (3 ft.), length (based off manufacturer), and roughness coefficient
 - Codes and regulations

Stormwater Quality Requirements

Table 2. Water Testing Requirements

Water Testing	Requirement
pH	7-9
Corrosion Inhibitor	Required
Sulfides	< 10 ppm
Sulfate	< 100 ppm
Chloride	< 50 ppm
Bacteria	< 1000 CFU/mL
Total Hardness	< 200 ppm
Residue after Evaporation	< 50 ppm
Turbidity	< 20 NTU (nephelometric)

Table 3. Irrigation Water Testing Requirements

Water Testing	Requirement
Turbidity	< 5 NTU
Fecal Coliform Organisms	< 1000 CFU/mL

ppm: parts-per-million, equal to mg/L CFU: Colony-Forming Unit NTU: The units of turbidity from a calibrated nephelometer

Task 1: Surveying

- Surveying of key areas will be conducted using total stations
- Survey data will be used to create a three dimensional model of the site using AutoCAD
- Model will demonstrate the distances and changes in elevation needed to develop the conveyance system designs

Figure 5. Topographic Map with Existing Storm Drains [2]

Figure 6. Drainage Basins of the Water Being Collected in the Detention Tanks [2]

Task 2: Hydrology7

Table 4. Site Hydrology Summary

Basin Number	Drainage Area (acres)	Flowrate-100 yr. (cfs)
1	2.15	14.29
2	0.64	4.01
3A	0.20	1.24
3B	0.18	1.22
4A	1.22	8.71
4B	2.40	9.75
5	1.40	9.32

Task 3: Stormwater Testing

Table 5. Stormwater Test Methods

Requirement	Test Method
pH	HACH Method #8156: pH
Sulfate	HACH Method #10248: Sulfate
Chloride	HACH Method #8113: Chloride
Bacteria	HACH Method #8074: Coliform
Total Hardness	HACH Method #8266: Total Hardness
Turbidity	Standard Method #2130B: Nephelometric Method
Total Suspended Solids	Standard Method #2540 C: Suspended Solids
Total Dissolved Solids	Standard Method #2540: Total Solids

Figure 7. Water Sample [4]

Task 4.1 Heating and Cooling Plant

4.1.1 Water Treatment System

- Client requested to implement the water treament system in Rm. 144
- After testing the initial inflow of the stormwater the steps for the treatment process will be determined

Figure 6: Storage and Treatment Location in Heating and Cooling Plant [2]

Water Treatment Process

The treatment process for the alternatives may include:

- Physical Treatment
 - Filtration: separate solids and oil from water
- Biological Treatment
 - Biological: remove organic matter to simple substances and additional biomass
- Chemical Treatment
 - Oxidation: eliminates the hydrogen sulfide and other chemicals
 - Disinfection: Used to remove, inactivate and killing pathogenic microorganisms (chlorination, ozonating)

Figure. Example of Chemical Treatment [7]

10

4.1.2 Pipe Network

- Distance from the tanks to the heating and cooling plant
- Determine design flow in gallons per minute (gpm)
- Import existing infrastructures into WaterGems (for differential elevations; static head, valves and fittings)
- Design according to depth, diameter, roughness coefficient, and pressure of water

Figure 7. Example of a Pipe Network Design in WaterGEMS [8]

11

4.1.3 Pump Selection

Flow rate (Q-max)
Vertical elevation change
Required horsepower
Minor and major head losses
Pump-Flo program

Figure 8: Example of an Operating Point of the Pump [9]

12

Task 4.2 Irrigation

- 4.2.1 Water Treatment Process
 - Determined after initial stormwater testing
- 4.2.2 Pipe Network
 - Tie into the existing pipe plans and existing sprinklers for irrigation
- 4.2.3 Pump Selection
 - Chosen according to static, dynamic head, and pump effciency curve

Figure 9. Possible Locations for Irrigation Purposes [2]

Task 5: Cost Analysis

Heating & Cooling Plant and Irrigation cost analysis will be based on:

5.1 Materials

► C-900

Diameter

Length

5.2 Operation

► Maintenance

► Power

5.3 Pumps

► Size

Total amount of pumps

5.4 Construction

- Trenching for piping
- Installation
- Equipment
- Labor

Task 6: Project Management

Meetings

- Grading instructor meeting (biweekly meetings)
- ► TA/Client meeting (monthly meetings)
- Team meeting (weekly meetings)
- Timing and tasks are logged through meeting agendas and minutes
- Deliverables
 - ▶ 30% and 60% Report
 - Presentation
 - Final Report
 - ► Website

Project Schedule

	2018														
project					30% Re	port						60%	Report	Final F	ReWebsite tion
Name	Week 35	Weet 36	Weet 37	Weet 38	Week 39	West 40	Week 41	Weet 42	Weet 40	West 44	Weet 45	Week 48	Weet 47	Week 48	Weet 49
Task 1: Field Work	012010	912110	2121 IO	2110110	512310	21.241.10	141110	10114410	1/12/110	1/120110	1 1144 10	111110	11110410	11125110	12/2 10
— • Task 1.1: Surveying															
Task 1.1.1: Topo Map															
Task 2: Hydrology				H,											
Task 3: Water Testing															
Task 3.1: Stormwater Quality															
Task 3.2 Heating and Cooling Water Quality					_										
 Task 3.3 Irrigation 															
 30% Report 					٠.										
Task 4: Design Alternatives															
— • Task 4.1: Water Treatment Process					· · · · · ·			1							
Task 4.1.1: Heating and Cooling							<u> </u>								
 Task 4.1.2: Irrigation 															
🖃 🍳 Task 4.2: System Design															
Task 4.2.1 Heating and Cooling System															
Task 4.2.1.1 Heating and Cooling Piping								l l l l l l l l l l l l l l l l l l l							
Task 4.2.1.2 Heating and Cooling Pump															
Task 4.2.1.3 Heating and Cooling Cost A									<u> </u>						
Task 4.2.2 Irrigation															
Task 4.2.2.1 Irrigation Piping Network															
 Task 4.2.2.2 Irrigation pump Selection 															
 Task 4.2.2.3 Irrigation Cost Analysis 															
 60% Report 												•			
Task 5: Cost Analysis															
Task 5.1: Materials															
 Task 5.2: Operation 															
Task 5.3: Pumps														_	
 Task 5.4: Construction 															
Final Report														•	
Presentation															•
 Website 															•

Project Staffing

Table 6. Equipment Fee

Equipment	Cost (\$/hr.)	Hours	Cost
Total Station	100	12	1200
Water Testing	80	25	2000
Total			3200

Table 7. Position Rates

Staff Position	Cost (\$/hr.)
Project Manager	80
Senior Engineer	120
Junior Engineer	90
EIT	40
Administration	25

Project Staffing Continued

Table 8. Descriptive title

Task	Project Manager	Senior Engineer	Junior Engineer	EIT	Administration	Task Total (hr)	Cost (\$)
1.0 Field Work	12	8	11	10	10	51	3560
2.0 Water Testing	0	8	0	0	10	18	1210
2.1 Initial Stormwater	12	0	11	10	0	33	2350
3.0 Design Solutions	0	8	0	0	10	18	1210
3.1 Heating and Cooling	12	0	10	10	0	32	2260
3.2 Irrigation	12	0	10	10	0	32	2260
4.0 Cost Analysis	10	8	11	10	10	49	3400
5.0 Project Management	20	8	29	10	15	82	5945
Staff Total (hr)	78	40	82	60	55	315	22195
						Equipment/ Facility Costs Total Cost	3200

References

[1] Google. Northern Arizona University. (2018).

[2] Northern Arizona University Stormwater Drainage Report. (2013). Flagstaff: GLHN Architects
 & Engineers Inc.

- [3] Smleng.com. (2018). NAU Science & Health Building Starling Madison Lofquist, Inc..
- [4] "Water Testing in NH | Secondwind Water Systems- Manchester, Bedford", Home, 2018.
- [5] En.wikipedia.org. (2018). Biosand Filter.
- [6] Watertreaters.com. (2018). Shivam Water Treatres.
- [7]"Products Equipment with Advanced Oxidation Processes (AOP)", Apriasystems.es, 2018.
- [8]"Using the zero diameter option in Darwin Designer Haestad | Hydraulics and Hydrology Wiki Haestad | Hydraulics and Hydrology Bentley Communities", *Bentley Communities*, 2018.
- [9] "1. INTRODUCTION", Nzdl.org, 2018.