

Alternative Septic & Irrigation System for Vineyard on Oak Creek

Client: Adam Bringhurst

Team Members: Carly Akine, Dylan Norfleet, William Richardson, Abdullah Alkandari

Civil and Environmental Engineering Capstone UGRADS Spring 2018 Date: 4/27/2018

Figure 1: Project Site, taken by Will Richardson

Project Background

Location:

- Located at 1955 North Echo Canyon Rd. Page Springs, AZ
- Yavapai County
- Largely located within the 100-year floodplain

Scope of Services:

- Alternative septic system design selection
- Irrigation design for vineyard
- Water quality analysis of well water
- 1-ft topographic map of property

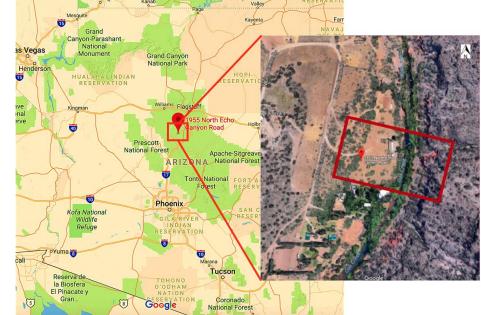


Figure 2: Site Location, provided by Google Maps [1]

Water Quality Analysis For Drinking Water Well

Table 1: Average Water Quality Analysis and EPA Standards

- Analysis was performed to determine any impacts of the septic system on the well.
- Three samples tested from each source location.
- Samples were tested against two independently prepared blanks.
- Secondary Maximum
 Contaminant level (SMCL)

	Average Tap	Average Well	EPA Standards [2]	Methods Used
Total Nitrogen (mg/L)	0.675	0.325	N/A	HACH 10071
Nitrate (mg/L)	0.1	0.3	10	HACH 8039
Fecal Coliform (number of colonies)	0	0	0	HACH 8074
рН	7.14	N/A	6.5 - 8.5 (SMCL)	Hanna Meter

NAU

Compliant Alternative Systems Wisconsin Mound [3]

- 3 components : septic tank, dosing chamber, and mound
- Elevated soil absorption system, located above the existing soil
- Fill material required
- Mound acts as filter for effluent before the water is recharged into the ground
- Cannot be located within the floodplain

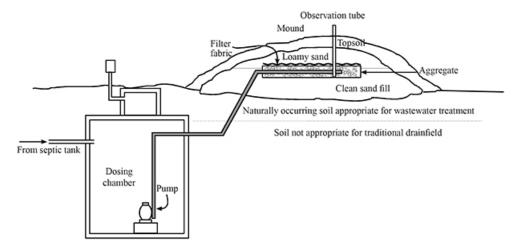


Figure 3: Wisconsin Mound Schematic [3]

Compliant Alternative Systems Sequencing Batch Reactor [4]

- Aerobic treatment process confined to one tank
- Less space required
- Eliminates need for additional clarifying tanks
- Works the best with intermittent flows

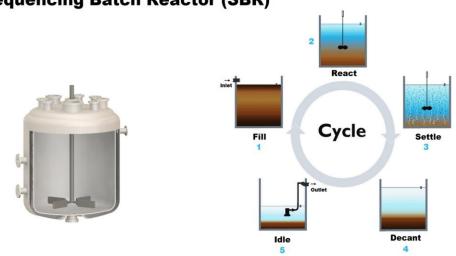


Figure 4: Sequencing Batch Reactor Treatment System [4]

Sequencing Batch Reactor (SBR)

Compliant Alternative Systems Aerobic System [5]

- Utilizes Aerobic bacteria to treat wastewater
- Permitted within the 100-year floodplain, given the effluent is treated to code requirements
- Multiple chambers or tanks
- Works best with consistent flows
- Some systems use UV or chlorination for disinfection at end of treatment

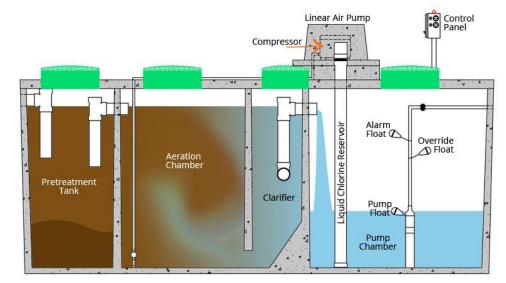


Figure 5: Aerobic septic system components [5]

Alternative Septic System Requirements

System Requirements [A.A.C. R18-9-A314]:

- 1000 gallon system
- Hydraulic loading = 300 gpd
- Effluent TSS = 30 mg/L
- Effluent BOD = 30 mg/L
- Effluent Total N = 53 mg/L
- Effluent Coliform = 300,000 colonies/100 mL

Figure 6: Seal of Arizona [A.A.C.]

Recommended System

- MicroFAST 0.5 Aerobic treatment unit made by Biomicrobics
- Meets Arizona Effluent standards
- 1000 gallon tank, and can handle the 300 gallon per day flow rate required
- Approximate \$12,000 cost for purchase of the aerobic unit, tank, UV chamber, and transportation
- Uses one singular tank
- 1 Influent
- 2 Settling
- 3 Aeration pump
- 4 Fixed bacteria media
- 5 Effluent to leach field



Figure 7: MicroFAST 0.5 wastewater treatment system [6]

Disposal Works Design

- Static Water Level in Well = 25 ft
- Percolation Rate = 1.58 min/in
- Soil Absorption Rate = 0.93 gpd/ft²
- Adjusted Soil Absorption Rate (SAR_a) used for alt. septic systems [A.A.C. R18-9-A312]

$$SAR_{a} = \left[\left(\frac{11.39}{\sqrt[3]{TSS + BOD_{5}}} - 1.87 \right) SAR^{1.13} + 1 \right] SAR$$

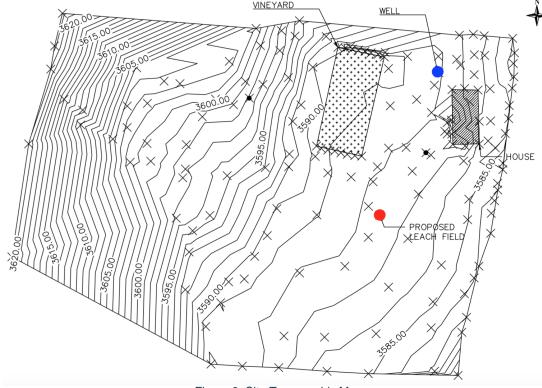


Figure 8: Site Topographic Map

Disposal Works Design

Table 2: Trench Specifications [A.A.C. R18-9-E302]

Adjusted SAR [A.A.C. R18-9-A312]	1.82 gpd/ft ²	
Min. Surface Area of Leach Field	165 ft ²	
Trench Length	19 ft	
Bottom Width of Trench	3 ft	
Effective Trench Depth	4 ft	
Trench Separation	8 ft	
Total Area of Leach Field	25 x 19 ft	

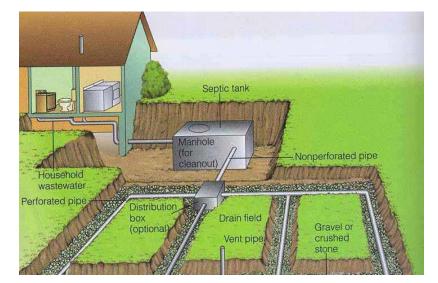
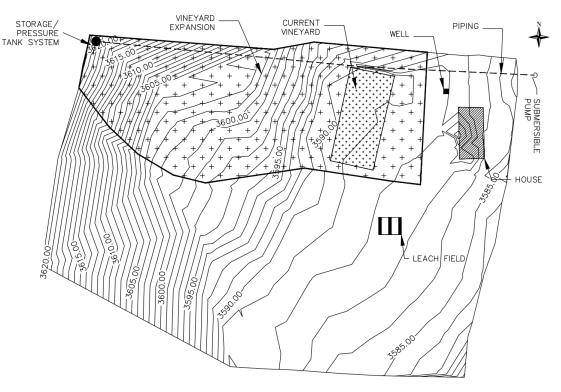


Figure 9: Trench system leach fields [7]


Vineyard Irrigation Design Overview

Vineyard Specs:

- 1500 Vines/acre & 1-2 acres
- Vine spacing of 6-ft by 8-ft
- Maximum water demand: 10,200 gpd/acre [8,9,10,11]
- Average water demand: 4,095 gpd/acre [8,9,10,11]

Components:

- Submersible Pump
- Storage Tank & Pump
- Pressure Tank
- Drip Irrigation

Irrigation System Design Drip Irrigation

Table 3: Dripline Specs

Dripline			
1/2 " Polyethylene Dripline Tubing [12]	Rated up to 60 PSI		
Emitter Flow Rate [12]	0.5 gph		
Typical Operating Pressure [13]	8-50 PSI		
Row Length	< 350 ft		
No. of Emitters	1500		
Irrigation Demand	~ 12.5 gpm/acre		

Pressure Tank [15]:

- 62 gallons total volume
- 19.9 gal drawdown at 30/50 PSI
- Recharged in 2 min with
 10 gpm pump

Additional Components:

- Backflow Prevention
- Thread Filter
- Pressure Regulator
- Pump switch

Figure 11: Pressure Tank [15]

Irrigation System Design Storage Tank & Irrigation Pump

Requirements:

- 5000 gallon storage tank
- 7 gpm minimum flow rate

Selected System:

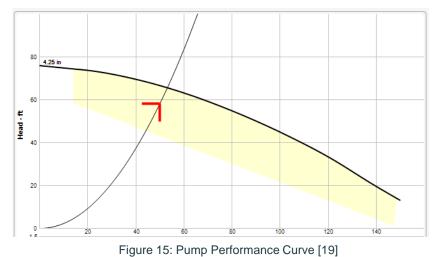
- 5000 gallon tank, 119" diameter & 112" height [16]
- 3/4 HP well jet pump [17]
- 12.5-30 gpm [17]

Figure 12: Straight Centrifugal Pump [17]

Figure 13: 5000 Plastic Storage Tank [16]

Irrigation System Design Submersible Pump

Pump Specifications


- Static Head = 63 ft
- Liquid Depth = 8 ft
- Discharge Length = 500 ft
- 3" schedule 40 PVC piping
- Flow of 53 GPM
- Calculated Total Head = 65.4 ft
- Total head is calculated using PumpFlo Application

Selected Pump [18]

- Gorman-Rupp Model S2A1
- 2" Inlet/Outlet
- 4.25" diameter
- 115 V

Figure 14: Gorman-Rupp Model S2A1 [18]

NAU

Schedule

Key:

Late

Original Actual Start Task Task Predicted End No. Date End Date Date Orange - Completed **1.0** Site Investigation 2/3/18 1/28/18 2/3/18 2.0 **Off-site Technical Analysis** 1/29/18 2/4/18 4/16/18 Alternative Septic System Design 3.0 2/5/18 3/25/18 3/25/18 **Evaluation** Irrigation System Design 4.0 2/5/18 3/25/18 3/25/18 **Evaluation** Alternative Septic System & **5.0** 3/26/18 4/19/18 4/22/18 Irrigation System Design

Table 4: Team Schedule

Cost of Staffing

Table 5: Cost of Staffing and Engineering Services [20]

1.0 Personnel	Classification	Hours	Rate (\$/hr)	Cost
	PE	15	\$195.00	\$2,925.00
	EIT	450	\$67.00	\$30,150.00
	TECH	5	\$48.00	\$240.00
	AA	200	\$56.00	\$11,200.00
	Total Personnel Cost			\$44,515.00
2.0 Travel	3 Site Visits @ 110 mi		\$0.40/mi	\$132.00
3.0 Subcontract	Site Survey			\$1,000
4.0 Total		670		\$45,647.00

Cost of Systems

Table 6: Estimated Quotes

Component	Estimated Quote	
Septic System [21]	\$ 12,000	
Septic Installation [21]	\$ 10,000	
Submersible Pump (Creek) [22]	\$ 6,000	
Irrigation System (1 acre) [23]	\$ 1,075	
5,000 Gal Storage Tank [16]	\$ 2,000	
Irrigation Pump (Tank) [17]	\$ 450	
Estimated Total :	\$ 31,525	

References

[1] Google Maps. [Online]. Available: https://www.google.com/maps/search/1955 N Echo Canyon Rd. Page springs AZ/@34.7765732,-111.9062815,13.87z. [Accessed: 22-Apr-2018].

[2] "National Primary Drinking Water Regulations," EPA, 11-Jul-2017. [Online]. Available: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. [Accessed: 22-Apr-2018].

[3] W. Woldt and S. Skipton, "Residential Onsite Wastewater Treatment: Mound Systems," Nebraska Extension, 2002. [Online]. Available:

http://extensionpublications.unl.edu/assets/html/g1475/build/g1475.htm. [Accessed: 24-Apr-2018].

[4] "Sequencing Batch Reactor (SBR)," ABSUN PALAYESH ENG Co.[Online]. Available: http://absunpalayesh.com/en/2015/12/30/sequencing-batch-reactor-sbr/. [Accessed: 24-Apr-2018].
 [5] C. H.- clickharder.com, "Parts of the Tank," *Lonestar Aerobic Services*. [Online]. Available: https://www.lonestaras.com/system-orientation/parts-tank/. [Accessed: 24-Apr-2018].

[6] "MicroFast," Florida Onsite Systems & Design. [Online]. Available: http://floridaonsitesystemsanddesign.com/microfast/. [Accessed: 23-Apr-2018].

[7] "How It Works," The Drainfield. [Online]. Available: http://www.co.thurston.wa.us/health/ehoss/drainfield.html. [Accessed: 23-Apr-2018].

[8] "Climate Arizona," U.S. climate data, [Online]. Available: http://www.usclimatedata.com/climate/arizona/united-states/3172. [Accessed 24 March 2018]

[9] P. Brown, "Standardized Reference Evapotranspiration: A New Procedure for Estimating Reference Evapotranspiration in Arizona," College of Agriculture and Life Sciences, University of Arizona, Tuscon, 2005.

[10] D.C. Slack and E.C. Martin, "Irrigation Water Requirements of Wine Grapes in the Sonoita Wine Growing Region of Arizona," Department of Agricultural and Biosystems Engineering, University of Arizona, Tuscon 1999.

[11] M. Moyer, R.T. Peters and R. Hamman, "Irrigation Basics for Eastern Washington Vineyards," Washington State University Extension, Pullman, 2013.

[12] "Standard Drip Irrigation Kit for Vineyard," DripDepot, [Online]. Available: http://www.dripdepot/com/product/standard-drip-irrigation-kit-for-vineyard. [Accessed 23 April 2018].

[13] D.F. Zoldoske, "Selecting a Drip Irrigation System for Vineyards," Center for Irrigation Technology, 1998.

[14] "Pressure Loss Calculator," DripDepot, [Online]. Available: http://www.dripdepot.com/irrigation-calculators/pressure-loss-calculator. [Accessed 15 April 2018].

[15] "Amtrol Well-X-Trol WX-251D, 62 Gallon, Water Pressure Tank with Composite Tank Stand," Aqua Science, [Online]. Available: http://www.aquascience.net/amtrol-well-x-trol-62-gallon-water-system-pressure-tank-with-composite-base-wx-251d. [Accessed 24 April 2018].

[16] 5000 Gallon Plastic Water Storage Tank," 5000 Gallon Plastic Water Storage Tank (N-42044). [Online]. Available: http://www.tank-depot.com/productdetails.aspx?part=N-42044&gclid=Cj0KCQjwh7zWBRCiARIsAld9b4r7cRVZMoFemeVuZRY3g9_64btgyUXtGIGaF3cPV6_YNb_xxKKxuk8aAjHEEALw_wcB. [Accessed: 24-Apr-2018].

[17] "Goulds J7S, 3/4HP, Single Nose Shallow Well Jet Pump," Aquascience.com, [Online]. Available: http://www.aquascience.net/goulds-j7s-single-nose-shallow-well-jet-pump-3-4hp. [Accessed 7 May 2018].

[18] "S Series (Widebase Submersible)," Gorman-Rupp, [Online]. Available: http://www.grpumps.com/product/S-Series-Widebase-Submersible. [Accessed 15 April 2018].

- [19] "Gorman Rupp Application Selection Program," Gorman-Rupp, [Online]. Available: http://gorman-rupp.pump-flo.com/app/pump.aspx?sid=gorman-rupp&CATID=622&SELID=2987936&PSID=38089064. [Accessed 15 April 2018].
- [20] "Cost of Staffing," Dr. Bero. Available: http://www.bblearn.nau.edu. [Accessed: March-2017].
- [21] Aim Environmental Industries, "Quote Estimation," D. Norfleet, 16-Apr-2018.
- [22] Phoenix Pumps Inc., "Quote Estimation," W. Richardson, 16-Apr-2018.
- [23] "Standard Drip Irrigation Kit for Vineyard," DripDepot, [Online]. Available: http://www.dripdepot.com/product/standard-drip-irrigation-kit-for-vineyard. [Accessed 23 April 2018].

Questions?